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Computer and Automation Research Institute
Hungarian Academy of Sciences

Budapest, P.O. Box 63
Budapest, Hungary, H-1518

gyarfas@sztaki.hu
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Abstract

A Gallai-coloring of a complete graph is an edge coloring such that no tri-
angle is colored with three distinct colors. Gallai-colorings occur in various
contexts such as the theory of partially ordered sets (in Gallai’s original paper)
or information theory. Gallai-colorings extend 2-colorings of the edges of com-
plete graphs. They actually turn out to be close to 2-colorings - without being
trivial extensions.

Here we give a method to extend some results on 2-colorings to Gallai-
colorings, among them known and new, easy and difficult results. The method
works for Gallai-extendible families that include for example double stars and
graphs of diameter at most d for 2 ≤ d, or complete bipartite graphs. It follows
that every Gallai-colored Kn contains a monochromatic double star with at
least 3n+1

4 vertices, a monochromatic complete bipartite graph on at least n/2
vertices, monochromatic subgraphs of diameter two with at least 3n

4 vertices,
etc.

The generalizations are not automatic though, for instance a Gallai-colored
complete graph does not necessarily contain a monochromatic star on n/2 ver-
tices. It turns out that the extension is possible for graph classes closed under
a simple operation called equalization.

We also investigate Ramsey numbers of graphs in Gallai-colorings with a
given number of colors. For any graph H let RG(r,H) be the minimum m such
that in every Gallai-coloring of Km with r colors, there is a monochromatic
copy of H. We show that for fixed H, RG(r,H) is exponential in r if H is not
bipartite; linear in r if H is bipartite but not a star; constant (does not depend
on r) if H is a star (and we determine its value).

1 Introduction

We consider edge colorings of complete graphs in which no triangle is colored with
three distinct colors. In [20] such colorings were called Gallai partitions, in [16] the
term Gallai colorings was used. The reason for this terminology stems from its close
connection to results of Gallai on comparability graphs [14]. We will use the term
Gallai-coloring and we assume that Gallai-colorings are colorings on complete graphs.
It is useful to keep in mind a particular Gallai-coloring - sometimes called canonical
coloring - where all color classes are stars (V = [n] and for all 1 ≤ i < j ≤ n edge ij
has color i.

More than just the term, the concept occurs again and again in relation of deep
structural properties of fundamental objects. A main result in Gallai’s original paper
– translated to English and endowed by comments in [24] – can be reformulated in

by OTKA Grant No. K68322 and by a János Bolyai Research Scholarship.

2



terms of Gallai-colorings. Basic results about comparability graphs can be equiva-
lently discussed in terms of Gallai-colorings, as the theorem below shows. Further
occurrences are related to generalizations of the perfect graph theorem [6], or appli-
cations in information theory [19].

The following theorem expresses the key property of Gallai-colorings. It is stated
implicitly in [14] and appeared in various forms, [5], [6], [16]. The following formula-
tion is from [16].

Theorem 1. Any Gallai-coloring can be obtained by substituting complete graphs with
Gallai-colorings into vertices of a 2-colored complete graph on at least two vertices.

The substituted complete graphs are called blocks whereas the 2-colored complete
graph into which we substitute is the base graph. Substitution in Theorem 1 means
replacements of vertices of the base graph by Gallai-colored blocks so that all edges
between replaced vertices keep their colors.

Theorem 1 is an important tool for proving results for Gallai-colorings. For ex-
ample, it was used to extend Lovász’s perfect graph theorem to Gallai-colorings, see
[6], [20]. In [5] a more refined decomposition of Gallai-colorings was established. In
this paper we focus on the following subjects:

• Extending 2-coloring results as black boxes

• Gallai colorings with fixed number of colors

1.1 Gallai-extension using black boxes

In [16] Ramsey type theorems for 2-colorings were extended to Gallai-colorings, using
Theorem 1. Here we have a similar goal, but we accomplish it using a completely
different method. Instead of extending the proofs of 2-coloring results, we define a
property - we call it Gallai-extendible - of families of graphs that automatically carries
over 2-coloring results to Gallai-colorings.
Definition. A family F of finite connected graphs is Gallai-extendible if it contains
all stars and if for all F ∈ F and for all proper nonempty U ⊂ V (F ) the graph
F ′ = F ′(U) defined as follows is also in F :

• V (F ′) = V (F )

• E(F ′) = E(F )\{uv : u, v ∈ U})∪{ux : u ∈ U, x /∈ U, vx ∈ E(F ) for some v ∈ U}.
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We will say that F ′ is the equalization of F in U . The conditions that Gallai-
extendible families must contain only connected graphs and must contain all stars
are somewhat technical. However, it seems that no application can really utilize
more general definitions - and in the canonical Gallai coloring every color class is a
star.

Our main result, Theorem 2, states that if every 2-colored Kn contains a monochro-
matic F of a certain order from a Gallai-extendible family then this remains true
for Gallai-colorings: every Gallai-colored Kn also contains from the same family a
monochromatic F ′ such that |V (F ′)| ≥ |V (F )|.

Theorem 2. Suppose that F is a Gallai-extendible family, and that there exists a
function f : N → N such that for every n and for every 2-coloring of Kn there is a
monochromatic F ∈ F with |V (F )| ≥ f(n).

Then, for every n and every Gallai-coloring of Kn there exists a monochromatic
F ′ ∈ F such that |V (F ′)| ≥ f(n) – with the same function f .

Moreover, such an F ′ exists in one of the colors used in the base-graph and also
with no edge of F ′ within a block of the base graph.

The proof of Theorem 2 is in Section 2 together with several examples of Gallai-
extendible families (Lemma 1). Applying Theorem 2 to these families, we get the
following corollaries (the first two were known before, the others are new). If G is a
graph, then H is called a spanning subgraph, if V (H) = V (G). Applying Theorem 2
to the family of connected graphs we get

Corollary 1. Every Gallai-colored complete graph contains a monochromatic span-
ning tree.

For 2-colorings, Corollary 1 is the well-known remark of Erdős and Rado - a first
exercise in graph theory. For Gallai-colorings it was proved by Bialostocki, Dierker
and Voxman in [1]. Applying Theorem 2 to the family of graphs having a spanning
tree of height at most two, we get

Corollary 2. Every Gallai-colored complete graph contains a monochromatic span-
ning tree of height at most two.

For 2-colorings Corollary 2 is due to [1], for Gallai-colorings it was proved in [16].
Applying Theorem 2 to the family of graphs with diameter at most three, we get

Corollary 3. Every Gallai-colored complete graph contains a monochromatic span-
ning subgraph of diameter at most three.
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For 2-colorings Corollary 3 can be found in [1], [25], [26]. Applying Theorem 2 to
the family of graphs with diameter at most two, we get

Corollary 4. Every Gallai-colored Kn contains a monochromatic subgraph of diam-
eter at most two with at least d3n

4
e vertices. This is best possible for every n.

For 2-colorings, this is due to Erdős and Fowler, [9] (a weaker version with an
easy proof is in [15]). The following construction ([9]) shows that Corollary 4 is
sharp: consider a 2-coloring of K4 with both color classes isomorphic to P4. Then
substitute nearly equal vertex sets into this coloring with a total of n vertices. (The
colorings within the substituted parts can be arbitrary.) Applying Theorem 2 to the
family of graphs containing a spanning double-star (two vertex disjoint stars joined
by an edge), we get

Corollary 5. Every Gallai-colored Kn contains a monochromatic double star with at
least 3n+1

4
vertices. This is asymptotically best possible.

The 2-color version of Corollary 5 is (a special case of) a result in [17], it slightly
extends a special case of a result in [8]: in every 2-coloring of Kn there are two points,
v, w and a color, say red, such that the size of the union of the closed neighborhoods
of v, w in red is at least 3n+1

4
. (The slight extension is that one can also guarantee

that the edge vw is red.) Corollary 5 is asymptotically best possible, as shown by a
standard random graph argument in [8]. Applying Theorem 2 to the family of graphs
containing a spanning complete bipartite graph, we get

Corollary 6. Every Gallai-colored Kn contains a monochromatic complete bipartite
subgraph with at least dn+1

2
e vertices, and at least one more if n is congruent to −1

modulo 4.

For 2-colorings Corollary 6 follows easily since there is a monochromatic star of
the required size. However, for Gallai-colorings there are not always monochromatic
stars with dn+1

2
e vertices - the largest monochromatic star has 2n

5
vertices, see [16].

It is worth noting that Corollary 6 is best possible for every n. Paley graphs pro-
vide infinitely many examples, but there are simpler 2-colorings that do not contain
monochromatic complete bipartite graphs larger than the size claimed in Theorem
6. Consider the vertex set as a regular n-gon and define the red graph by edges xy
forming a diagonal of length at most k (if n = 4k, 4k + 1, 4k + 2) or at most k + 1 (if
n = 4k + 3).

We conclude this part with some remarks on Gallai-extendible families. A broom
is the union of a path and a star where the end-vertex of the path coincides with the
central vertex of the star, and this is the only common vertex of the two. Burr [3]
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proved that every 2-colored complete graph has a monochromatic spanning broom.
Gyárfás and Simonyi [16] extended Burr’s theorem to Gallai-colorings. We can not
reprove this result with Theorem 2 as a black box extension of Burr’s theorem because
brooms are not Gallai-extendible. However - and similar ideas might be useful in other
potential applications of Theorem 2 - it is possible to combine a key element of Burr’s
proof with Gallai-extendable families (in our case with F5, i.e. graphs containing a
spanning complete bipartite graph) to extend Burr’s theorem to Gallai colorings.

1.2 Gallai colorings with given number of colors

As mentioned above, in canonical Gallai-colorings each color class is a star, thus
Gallai-colorings do not necessarily contain any monochromatic H different from a
star (apart from isolated vertices). However, we may define for any graph H a kind
of restricted Ramsey number, RG(r,H), the minimum m such that in every Gallai-
coloring of Km with r colors, there is a monochromatic copy of H.

It turns out that some classical Ramsey numbers whose order of magnitude seem
hopelessly difficult to determine, behave nicely if we restrict ourselves to Gallai-
colorings with r-colors. For example, the Ramsey number of a triangle in r-colorings,
R(r,K3) is known to be between bounds far apart (cr and ber!c+ 1, see for example
in [22]) but it is not hard to determine RG(r,K3) exactly as follows.

Theorem 3.

RG(r,K3) =

{
5k + 1 for r = 2k
2× 5k + 1 for r = 2k + 1

In fact - as we were informed by C. Magnant, [23] - Theorem 3 is due to Chung
and Graham, [7]. Here we give a simpler proof, using Theorem 1.

It is worth noting that there are several “extremal” colorings for Theorem 3. For
example, let G1 be a black edge and let G2 be the K5 partitioned into a red and a
blue pentagon. The graphs H1, H2 obtained by substituting G1 (G2) into vertices
of G2 (G1) have essentially different 3-colorings and both are extremal for r = 3 in
Theorem 3.

Although one can easily determine some more exact values of RG(r,H) for small
graphs H, we conclude with the following two theorems that determine its order of
magnitude.

Theorem 4. Assume that H is a fixed graph without isolated vertices. Then RG(r,H)
is exponential in r if H is not bipartite and linear in r if H is bipartite and not a
star.
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Theorem 5. If H = K1,p is a star and r ≥ 3 then RG(r,H) = 5p−1
2

for odd p,
RG(r,H) = 5p

2
− 3 for even p.

For completeness of the star case, notice that for H = K1,p we have trivially
RG(1, H) = R(1, H) = p + 1 and RG(2, H) = R(2, H) can be determined easily
(2p− 1 for even p and 2p for odd p, [18]). It is also worth noting that while RG(r,H)
is constant (does not depend on r), R(r,H) is linear in r (and in p), see [4].

A Gallai-coloring can be also viewed as an anti-Ramsey coloring for C3 - anti-
Ramsey colorings for a graph H have been introduced in [10]. This direction has
a large literature that we do not touch here. Moreover, Gallai-colorings are also
connected to so- called mixed Ramsey numbers, where the aim is to find either a
multicolored graph G (in our case a triangle) or a monochromatic graph H. We
are aware of some papers in preparation that determine exact values of RG(r,H).
Faudree, Gould, Jacobson and Magnant [11] determined the value of RG(r,H) for
many bipartite graphs H. Fujita [12] proved that RG(r, C5) = 2r+1 + 1; Fujita and
Magnant [13] extended Gallai-colorings to colorings without a rainbow S+

3 , a triangle
with a pendant edge.

2 Gallai-extendible families - proof of Theorem 2

We denote by distH(u, v) the number of edges in a shortest path of H between u, v ∈
V (H).

Lemma 1. The following families are Gallai-extendible:

– F1, the family of connected graphs;

– F2(d), the family of graphs having a spanning tree of height at most d, for any
d ≥ 2 – equivalently a root x ∈ V (F ) such that dist(x, v) ≤ d for all v ∈ V (F );

– F3(d), the family of graphs with diameter at most d for any d ≥ 2;

– F4, the family of graphs having a spanning double-star – equivalently, two ad-
jacent vertices forming a dominating set;

– F5, the family of graphs containing a spanning complete bipartite graph, that is,
the family of graphs F so that V (F ) can be partitioned into two nonempty sets
A and B so that ab ∈ E(F ) for all a ∈ A, b ∈ B;

Proof. We prove for all these families F and every F ∈ F , and for all proper
nonempty U ⊆ V (F ) (or U ∈ UF ) that the graph F ′ we get after equalizing in U is
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still in F . Since the five families we consider are closed under the addition of edges
and it is immediate from the definition that equalization is a monotonous operation,
that is, F1 ⊆ F2 implies F ′

1 ⊆ F ′
2, it is sufficient to prove F ′ ∈ F for minimal elements

F ∈ F . Whenever it is comfortable to exploit this fact we will do it: for instance
when checking the statement for F2 or F4, F can be chosen to be a tree of height at
most two, or a double-star.

For F1 the statement is immediate noting that the connectivity of F implies that
whenever an edge e = xy ∈ E(F ), F ∈ F1 disappears, there exists a path of length 2
in F ′ between its endpoints.

For F = F2(d) or F = F3(d) the following claim will provide the statement:

Claim: For u, v ∈ V (F ), uv ∈ E(F ) we have distF ′(u, v) ≤ 2, and if uv /∈ E(F ) then
distF ′(u, v) ≤distF (u, v)

Indeed, if uv ∈ E(F ), then either at least one of u and v is not in U , and then
uv ∈ E(F ′), or u, v ∈ U , and then - from the connectivity of F and the fact that U is
a proper subset of V (F ) - they have a common F ′-neighbor. The first part is proved.

To prove the second part, let P be a shortest path in F between u and v, |E(P )| ≥
2. Then P can be subdivided to subpaths induced by U and other subpaths (there
must be others, since otherwise replace P by a two-path from u to v). Define the
path P ′ in F ′ between u and v by replacing the subpaths in U by an arbitrary vertex
in the subpath - in the special case when u or v is on the subpath, replace it by u
or v. Since all vertices of U have the same neighbors outside U , P ′ will indeed be a
path in F ′, and |E(P ′)| ≤ |E(P )|, as claimed.

Now if F ∈ F2(d) (d ≥ 2), apply the claim to the root x, and all other vertices
v ∈ V (F ) to get that F ′ ∈ F2(d). Similarly, if F ∈ F3(d), apply the claim to all pairs
u, v ∈ V (F ).

If F ∈ F4, let xy ∈ E(F ) be such that V (F ) consists of neighbors of x and
neighbors of y. If neither x nor y are in U , no edge is deleted at equalization and
there is nothing to prove. Similarly, if exactly one of them is in U , say x ∈ U , y /∈ U ,
then xy ∈ F implies that y is adjacent in F ′ with every vertex in U , and the vertices
that are not in U remain neighbors of x or y in F ′ as well.

It remains to check F ′ ∈ F4 if both x, y ∈ U . This is also easy, because every
vertex of F is adjacent to at least one of x and y, and therefore in F ′ every vertex
of U is adjacent to every vertex in V (F ) \ U . We are then done, because a complete
bipartite graph contains a spanning double-star.

Let F ∈ F5. If one of the two classes, say A is disjoint of U , F ⊆ F ′, so the
statement is obvious. If now U meets both A and B in a vertex a and b respectively,
we are also done, since all A ∪ B is F -adjacent with either a or b, so all vertices of
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U ∩ (A ∪ B) are F ′-adjacent with all vertices of (A ∪ B) \ U , and both of these sets
are nonempty, finishing the proof for this class. 2

Proof of Theorem 2. Suppose that F is a Gallai-extendible family and c is a
Gallai-coloring of Kn. By Theorem 1, c can be obtained by substituting Gallai-
colored complete graphs into the vertices {v1, v2, . . . , vk} of a base graph B with a
red-blue coloring , k ≥ 2. Suppose that B is connected in red (in fact, we shall use
only that B has no isolated vertex in red). The vertex sets of the substituted complete
graphs give a partition U on V (Kn).

Let c′ be the 2-coloring of Kn obtained from c by recoloring all edges within all
blocks of the partition U to the red color. In the coloring c′, by the assumption
of Theorem 2, Kn has a subgraph F ∈ F with |V (F )| ≥ f(n), such that F is
monochromatic in c′. If F is blue then F is a monochromatic subgraph in c as well
and the proof is finished.

Thus we may assume that F ⊆ Ec′(red) (the red edges in c′). If V (F ) ⊆ U for
some U ∈ U then - using that B has no isolated vertex in the red color - we can select
a star S in Kn such that S is red in c, its center v /∈ U and its leaf set is U . Now
S ∈ F (because F contains all stars) and |V (S)| > |V (F )|, finishing the proof.

Thus we may assume that V (F ) is not a subset of any block of U . Now equalize F
in the blocks of U one after the other. Since F is connected and V (F ) is not a subset
of some block, eventually all recolored edges will be deleted during the equalizations.
We claim that the graph F ′ resulting from the equalization process is a subgraph of
Ec(red). Indeed, equalization adds an edge ux (u ∈ U) only if x /∈ U , and there
exists v ∈ U , vx ∈ E(F ). Since E(F ) ⊆ Ec′(red), and vx is not a recolored edge,
vx ∈ Ec(red) follows. Since every block sends only edges of one and the same color
to every vertex, ux ∈ Ec(red) as well, confirming the claim.

Since F is Gallai-extendible, F ′ ∈ F , and clearly |V (F ′)| ≥ |V (F )| ≥ f(n). Now
the proof is finished (the extra property stated about F ′ is obvious). 2

3 Proof of Theorems 3,4,5.

Proof of Theorem 3: Let f(r) denote the function one less than the claimed value
of RG(r,K3). Observe that

f(r) ≥ 2f(r − 1) (1)

for r ≥ 2 with equality for odd r, and

f(r) = 5f(r − 2) (2)

for r ≥ 3.
To show that RG(r,K3) > f(r) let G1 be a 1-colored K2 and let G2 be a 2-colored

K5 with both colors forming a pentagon. Recursively construct Gr for odd r ≥ 3 by
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substituting two identically colored Gr−1’s into the two vertices of G1 (colored with
a different color). Similarly, for even r ≥ 4, let Gr be defined by substituting five
identically colored Gr−2’s into the vertices of G2 (colored with two different colors).
The r-coloring defined on Gr is a Gallai-coloring, clearly has f(r) vertices and contains
no monochromatic triangles.

We prove by induction that if a Gallai-coloring of K with r-colors and without
monochromatic triangles is given then |V (K)| ≤ f(r). Using Theorem 1, the coloring
of K can be obtained by substitution into a 2-colored nontrivial base graph B. In
our case clearly 2 ≤ |V (B)| ≤ 5.
Case 1: |V (B)| = 2. Since there are no monochromatic triangles, the graphs substi-
tuted can not contain any edge colored with the color of the base edge, therefore, by
induction, they have at most f(r − 1) vertices. Thus

|V (K)| ≤ 2f(r − 1) ≤ f(r)

using (1).
Case 2: |V (B)| = 3. The base graph has no monochromatic triangle so it has
an edge b1b2 whose color is used only once (as a color on a base edge). Then the
graphs substituted into b1, b2 must be colored with at most r−2 colors and the graph
substituted into the third vertex must be colored with at most r − 1 colors. Thus

|V (K)| ≤ 2f(r − 2) + f(r − 1) ≤ f(r − 1) + f(r − 1) = 2f(r − 1) ≤ f(r)

using (1) twice.
Case 3: 4 ≤ |V (B)| ≤ 5. The base graph has no monochromatic triangle so each
vertex in the base is incident to edges of both colors. Therefore

|V (K)| ≤ |V (B)|f(r − 2) ≤ 5f(r − 2) = f(r)

using (2). 2

Proof of Theorem 4: First we give an upper bound on RG(r,H) that is exponential
in r by showing RG(r,H) ≤ t(n−1)r+1 where t = R(2, H) − 1 and n = |V (H)|.
We shall assume that |V (H)| ≥ 3 therefore n ≥ 3, t ≥ 2. Suppose indirectly that
a Gallai-coloring with r colors is given on K, |V (K)| ≥ t(n−1)r+1 but there is no
monochromatic H. The base graph B of this coloring has no monochromatic H
therefore |V (B)| ≤ R(2, H) − 1 = t. This implies that some of the graphs, say
G1, substituted into B has at least t(n−1)r vertices. Let v1 be an arbitrary vertex
of K not in V (G1). Note that every edge from v1 to V (G1) has the same color.
Iterating this process with G1 in the role of K, one can define a sequence of vertices
v1, v2, . . . , v(n−1)r+1 such that for every fixed i and j > i the colors of the edges vi, vj are
the same. By the pigeonhole principle there is a subsequence of n vertices spanning
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a monochromatic complete subgraph Kn ⊂ K and clearly H is a monochromatic
subgraph of Kn - a contradiction. Thus, for any - in particular non-bipartite - H we
proved an upper bound exponential in r.

For a bipartite H assume that both color classes of H have at most n vertices. We
show that RG(r,H) ≤ pt(n− 1), where p = (n− 1)r + 2 ( and t is as defined earlier),
providing an upper bound linear in r. Indeed, suppose indirectly that a Gallai-coloring
with r colors is given on K, |V (K)| ≥ pt(n − 1) but there is no monochromatic
H. The base graph of the Gallai-coloring has at most t vertices, otherwise we have
a monochromatic H. Applying the same argument as in the previous paragraph,
we find that there is a graph G1, substituted to some vertex of the base graph,
such that |V (G1)| ≥ |V (K)|

t
≥ p(n − 1). If |V (K) \ V (G1)| ≥ 2n − 1 then - by

the pigeonhole principle - we can select X ⊂ V (K) \ V (G1) so that |X| = n and
[X,V (G1)] is a monochromatic complete bipartite graph - this graph contains H
and the proof is finished. We conclude that |V (G1)| ≥ pt(n − 1) − 2(n − 1) =
(pt−2)(n−1). Select v1 ∈ V (K)\V (G1) and iterate the argument: into some vertex
of the base graph of the Gallai-coloring on G1 a graph G2 is substituted with at least
|V (G1)|

t
≥ (p − 1)(n − 1) vertices. Selecting v2 ∈ V (G1) \ V (G2) we continue until

T = {v1, v2, . . . , vp−1} is defined. There is still at least 2(n− 1) > n vertices in Gp−1

thus selecting Y ⊂ V (Gp−1) with |Y | = n, we have a complete bipartite graph [Y, T ]
such that from each v ∈ T all edges from Y to v are colored with the same color.
Since |T | = p − 1 = (n − 1)r + 1, by the pigeonhole principle there is Z ⊂ T such
that |Z| = n and [Y, Z] is a monochromatic complete bipartite graph which obviously
contains a monochromatic H - a contradiction. Thus, for bipartite H we have an
upper bound linear in r.

Lower bounds of the same order of magnitude can be easily given. For a non-
bipartite H it is obvious that RG(r,H) > 2r because we can easily define a suitable
Gallai-coloring with r colors by repeatedly joining with a new color two identically
colored complete graphs of the same size.

If H is bipartite and not a star, it contains two independent, that is, vertex-disjoint
edges. Then we have RG(r,H) > r +1 because the canonical Gallai-coloring of Kr+1

with r colors (where color class i is a star with i edges) does not have a monochromatic
H. 2

Proof of Theorem 5: Assume H = K1,p, r ≥ 3. We use a construction and a
result from [16]. To see that the claimed values of RG(r,H) can not be lowered, let
C be a K5 colored with red and blue so that both color classes form a pentagon. For
odd p substitute a green K p−1

2
to each vertex of C. For even p substitute K p

2
into one

vertex of C and K p
2
−1 to the other four vertices of C. The claimed upper bound for

RG(r,H) follows immediately from the following result of [16]: any Gallai-coloring

of K contains a monochromatic star with at least 2|V (K)|
5

edges. 2
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