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Abstract

We consider independent jobs to sequence on a single resource under a special unavailability constraint: a set of forbidden
instants is given, where no job is allowed neither to start not to complete. We show that a schedule without idle time
always exists if the number of forbidden instants is less than the number of distinct processing times appearing in the
instance. We derive a quite fast algorithm to find such a schedule, based on an hybridization between list algorithm and
local exchange. We then improve our approach to propose a strongly polynomial time algorithm under a High Multiplicity
encoding. As a corollary minimizing the makespan for a constant number of forbidden instants is polynomial.
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1. Introduction

We call a forbidden start & end instant a point in time
where no job is allowed neither to start nor to complete.
Such forbidden start & end instants (Fse for short, or sim-
ply forbidden) arise when jobs need additional resources at
launch and at completion. These additional resources may
not be continuously available, as they can be shared with
other yet planed activities. For instance consider the situ-
ation where the jobs are processed by an automated device
during a specified amount of time, but a qualified operator
is required at setup and at completion. While the device
is continuously available, operators have day-off and hol-
idays. This creates some forbidden days when the jobs
can be performed by the device, but none can start nor
complete. We encountered this problem in chemical in-
dustry [12] through an industrial collaboration with the
Institut Français du Pétrole (IFP), a large research cen-
ter in fields of energy and transport. The jobs consisted
in chemical experiments whose durations typically last be-
tween 3 days and 3 weeks. The intervention of a chemist
is required at start and termination: at start, the chemist
basically fills up the device and launches the process. At
termination he has to stop the chemical reactions for the
analysis of the experimental results.

The additional resource can also be for instance a spe-
cial handling tool, expansive enough for the company not
to own it but to call a subcontractor. For very large prod-
ucts like turbines for hydropower plants, a crane lifting is
needed to put in and get out the product from the shop
floor. Due to strict deadlines, teams are often organized
to work continuously, and thus a finished product must
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immediately get out in order to start the next one. How-
ever an overcost is typically paid to rent the crane lifting
on week-ends. The objective is then to find a schedule
of minimal duration for the different products such that
ideally no overcost is paid. One can imagine other ad-
ditional resources such as energy (burning up or cooling
down operations), water, etc., with consumption restric-
tion or overcost during some periods.

In this article we consider the scheduling problem of a set
of n jobs to sequence on a single resource in presence of Fse
instants. The objective is to minimize the completion time
of the last job, also called the makespan of the schedule. As
a variant we also investigate the case where a penalty cj is
associated to the jth Fse instant: this cost is paid if a job
starts or ends at this instant. Another penalty d is paid
per day late to complete all the jobs. This corresponds
to the previous subcontractor problem. The objective is
then to find a schedule of minimal cost. We show that
both problems are polynomial for a fixed number of Fse
instants.

The remaining of the paper is organized as follows: in
Section 2 we present a literature review on scheduling with
forbidden instants, together with some notations and def-
initions. Section 3 is devoted to establish that a sched-
ule without idle time always exists if the number of Fse
instants is smaller than the number of distinct processing
times appearing in the instance. We call such an instance a
large diversity instance. Based on these results we propose
in Section 4 polynomial time algorithms to solve the prob-
lem in case of a constant number of forbidden instants.
Finally we prove in Section 5 that the problem remains
polynomial under a high multiplicity encoding for large di-
versity instances.
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2. Notations and preliminary definitions

We consider a set of n independent jobs, with process-
ing times p1, . . . , pn, to be sequenced on a single resource
where k Fse instants appears. A schedule is feasible if no
job starts nor completes its processing during a forbidden
instant. Preemption of jobs is not allowed. All data are
assumed to be integers. In addition the starting time and
completion time of any job are also restricted to take inte-
ger values. With the objective of minimizing the duration
of the schedule, we designate the problem as 1|Fse|Cmax.
Figure 1 gives an example of a feasible schedule for the
instance composed of 4 jobs {a, b, c, d} of duration pa = 5,
pb = 3 and pc = pd = 2. Two forbidden instants are
present, at time 7 and 10. The jobs are scheduled accord-
ing to the sequence (a, b, c, d): due to forbidden instant 10,
processing of job c has to be delayed up to time 9, resulting
in a makespan of 13. Notice that the sequence (c, d, a, b)
would give a schedule without idle time. As we have 3
different processing times and only 2 forbidden instants,
next section will assert the existence of such an idle-free
schedule.

a b c d

���� ����

7 10 130

Figure 1: The Gantt chart of a feasible schedule for 1|Fse|Cmax

following the sequence (a, b, c, d). Forbidden instants are represented
on the time axis by dashed rectangles. The schedule completes at
time 13

In scheduling theory, machine non-availability problems
have been largely investigated (see for instance Lee [13] for
a survey). Machine non-availabilities correspond to peri-
ods where the machine can not process any job, typically
due to a preventive maintenance. In contrast a Fse in-
stant only prevents a job completion or a job start: the
machine can go on processing its current job. In [4, 15],
the authors study a scheduling problem with similar con-
straints: an operator non-availability (Ona) period is de-
fined as an open time interval in which no job can start
nor end. With the makespan as objective criterion, they
prove the problem to be NP-hard and not in APX even
if the duration of any Ona period is smaller than the pro-
cessing time of any job. Notice that if processing times
are integers and jobs are required to start at integer in-
stants, an Ona period (s, s + t) can be represented by the
finite, but exponentially large, set of forbidden instants
{s+1, s+2, . . . , s+ t− 1}. However we do not consider in
this article any special condition on the distribution of the
forbidden instants. Other previous works have considered
additional resources for task setup or ending operations.
Cheng et al. [5] study a 2-machine flowshop scheduling
problem where the same operator performs setup and dis-
mounting operations on both machines following a cyclic
movement pattern. This problem is connected with the

server model (see for instance [8, 1]), where a server has
to do some setup operations before the processing of a job
starts on a machine, or is required to unload the machine,
see Ou et al. [14], where an example is given from logistics.
A server model deals with the problem of sharing an addi-
tional resource among several machines, creating machine
interferences [10], while we consider in this paper unavail-
ability constraints on the additional resource. Our prob-
lem could correspond to the situation where a schedule has
yet been fixed for the server, and we have to incorporate
a new machine with allotted jobs in the planning. If setup
time is one unit, the fixed schedule of the server is seen
by this machine precisely as forbidden instants. Note that
problem P2, S1|sj = 1|Cmax with a single server shared
by two parallel machines has been proved NP-hard by
Hall et al. [8], while Kravchenko and Werner [11] propose
a pseudo-polynomial time algorithm. More precisely they
show that an optimal schedule for P2||Cmax can be con-
verted into an optimal schedule for P2, S1|sj = 1|Cmax.
This procedure runs in time O(n log n) and is based on
local job exchanges. We use quite similar technics in
this paper, except that forbidden instants are fixed. The
most relevant work to our problem is certainly Billaut &
Sourd [2]. They consider the scheduling of independent
jobs on a single machine where a set of time slots is for-
bidden for starting the processing of a job. We call in this
paper such an instant a Fs instant (for forbidden start).
They prove that minimizing the makespan is polynomi-
ally solvable if the number of forbidden start times is a
constant, and NP-hard in the strong sense if this number
is part of the input. Their algorithm runs in time com-
plexity O(n2k2+2k−1), where k denotes the number of Fs
instants. They also establish that an idle-free schedule ex-
ists if at least 2k(k + 1) distinct processing times appears
in the instance. Interestingly enough, they prove that for
the special case of 2 forbidden start instants, having 3 dis-
tinct processing times is a sufficient condition to assess
the existence of a schedule without idle time. This article
generalizes and improves their results for Fse instants: we
prove that having k + 1 distinct processing times is suf-
ficient to ensure the existence of an idle-free schedule in
presence of k Fse instants. In this case we derive a fast
algorithm to compute such an optimal schedule: the algo-
rithm is an original hybridization between list scheduling
and local search. The overall complexity to solve the prob-
lem for a constant number of forbidden instants is reduced
as a consequence of our result to O(nk). In addition the
proofs used new ideas and are far shorter. Finally we also
propose a polynomial time algorithm for the High Multi-
plicity version of the problem, while Billaut & Sourd only
considered the case k = 2. Before presenting our notations
and the concept of valid partition and exchangeable jobs,
we quote the following theorem from Billaut & Sourd [2]:

Theorem 1 The scheduling problem 1|Fse|Cmax is NP-
hard in the strong sense
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Proof. The reduction from 3-Partition is the same as
in Billaut & Sourd [2]. As they noticed the many to one
reduction used in the proof can easily be transformed into
a gap reduction by appending a large (but polynomial)
number of consecutive forbidden instants at the end of
the schedule. This proves that 1|Fse|Cmax is not in APX
if P 6= NP. �

Throughout this paper we denote by N the set
{1, . . . , n} of jobs indices and by Γ = {γ1, . . . , γk} the set of
forbidden instants, indexed in increasing order. As usual a
sequence f defined on N is extended to any subset S ⊆ N
by letting f(S) =

∑
i∈S fi. The number of distinct pro-

cessing times will play a central role in our analysis. We
say that 2 jobs are of the same type is they have the same
processing time. We denote by 〈S〉 the set of (distinct)
types appearing in a subset S of jobs. By slight abuse of
language, we will often confuse ”type” and ”job” in the
sense that we will speak about the processing time of a
type, instead of the processing time of a representative
(job) of this type. For a subset S of jobs (and by exten-
sion of types), we denote by min S and max S the minimal
and maximal value of pi over S, respectively.

We will prove in next section that if the number of types
is greater than the number of forbidden instants, then
there exists a schedule without idle time. We need first
some additional definitions. We call a partition S ∪ U of
N a valid partition if and only if there exists a schedule for
S starting at time 0, without idle time. A valid partition
has to be thought as the set S of scheduled jobs and the
set U of unscheduled jobs at some step of a constructive
algorithm. Such a constructive algorithm, presented in
Section 4, will naturally try at each step to append a new
job to its current partial schedule. We say that S is blocked
if none of the unscheduled jobs can be appended to S with-
out violating the forbidden instants, i.e. p(S) + pi ∈ Γ for
all i ∈ U . In this case local exchanges between jobs of S
and U will be needed to ”unblock” the partial schedule.
We introduce the following definition:

Definition 1 We call a job (a type) s ∈ S exchangeable
if S ∪ {u}\{s} defines a valid partition, where u is a job
of duration minU . We denote by E(S) ⊆ 〈S〉 the subset
of exchangeable types that are not in 〈U〉

Clearly a necessary condition for a job x to belong to
E(S) is that p(S) − px + minU does not coincide with a
forbidden instant. In next section Property 1 proves that
it is in fact a sufficient condition in some circumstances.
Figure 2 shows an example of partial schedule, defining
the valid partition S = {1, 2, 3}. The remaining jobs to
schedule are U = {4, 5}. They are represented above the
Gantt chart to stress the fact that the partition is blocked.
In the same way we have represented job 2 under the time
axis to visualize that it is not exchangeable with job 4:
an idle-free schedule of set {1, 3, 4} would complete on a
forbidden instant. As job 3 is of same type as job 4, set

E(S) is reduced to singleton {1}.

���� ���� � �� �� �� �����
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Figure 2: An example of blocked valid partition S = {1, 2, 3}. Set
U = {4, 5} has been represented above the Gantt chart to visualize
the corresponding forbidden instants. Under the time axis job 2 is
represented to visualize that it is not exchangeable with job 4.

For x in S, we note Sx = S\{x} ∪ {u} the partition
obtained by unscheduling a job of type x and by scheduling
a job u of type minU . By definition for x ∈ E(S), set Sx

defines a valid partition, that differs from S only by jobs
x and u. Of course their respective idle-free schedule may
be totally different.

3. Existence of an idle free schedule

We now state that it is possible to schedule a set of
jobs without idle-time if the number of distinct processing
times is greater than the number of forbidden instants.
Another necessary condition is of course that the sum of
the processing times does not coincide with a forbidden
instant. For the same reason we require in this part that
0 /∈ Γ. For a subset S of jobs, let Γ(S) = {γ ∈ Γ | γ ≤
p(S)} be the set of forbidden instants appearing before
time p(S).

Theorem 2 If |〈N〉| > |Γ(N)| and 0, p(N) /∈ Γ, then
there exists a feasible schedule for N without idle time.

The remaining of this section is devoted to prove The-
orem 2. Note that the assumptions of Theorem 2 are the
weakest possible to ensure the existence of an idle-free
schedule. Indeed if |〈N〉| = |Γ(N)|, for some instances
idle times will be forced in any schedule: consider for ex-
ample set Γ = {pi|i ∈ 〈N〉}. Necessarily an idle time
appears in any feasible schedule at time 0 although it is
not a forbidden instant.

Theorem 2 can be rephrased as N ∪ ∅ is a valid par-
tition. We prove this result by induction on |Γ(N)|. If
|Γ(N)| = 0, certainly Theorem 2 holds. Now consider that
|Γ(N)| = K > 0 and assume the result true for any set
S of jobs such that |Γ(S)| < K. First, we can use the in-
duction hypothesis to give the following characterization
of exchangeable jobs:

Property 1 (Characterization of E(S)) Consider a
valid partition S ∪ U such that S is blocked. We have
E(S) = {x /∈ 〈U〉 | p(Sx) /∈ Γ}
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Proof. Clearly if x ∈ E(S), then p(Sx) can not coincide
with an instant of Γ by definition of a valid partition.
Conversely consider a type x /∈ 〈U〉 such that p(Sx) /∈ Γ.
Let u be a job of U with the smallest execution time,
and let γ be the instant p(S) + pu. Since S is blocked
there exists at least |〈U〉| forbidden instants in interval
[γ, p(N)], as p(S) + pu ∈ Γ for all u ∈ 〈U〉. Thus we
have |Γ(Sx)| ≤ |Γ(N) ∩ [0, γ)| ≤ |Γ(N)| − |〈U〉|. In
particular we have |Γ(Sx)| < K. Now let us bound the
number of types in Sx. Clearly we have Sx ∪ U ⊇ N\{x}
and Sx ∩ U ⊇ {u}. As for any sets A and B we can
write |〈A ∪B〉| = |〈A〉| + |〈B〉| − |〈A ∩B〉|, it results
that |〈Sx〉| ≥ |〈N〉| − |〈U〉|. We have established that
|〈Sx〉| > |Γ(Sx)| and |Γ(Sx)| < K: the induction hypothe-
sis shows that Sx is a valid partition. �

The benefit of exchanging jobs is to modify the set of
types of unscheduled jobs. We may hope that after a series
of exchanges we will be able to append a new job to the
current schedule. Lemma 1 gives a sufficient condition for
this situation to happen:

Lemma 1 Consider a valid partition S ∪ U . If S is
blocked, then set E(S) is not empty. In addition if
max E(S) < minU , then there exists x ∈ E(S) such that
Sx is not blocked.

Proof. We use a simple counting argument. First we
define F (S) as 〈N〉\(〈U〉 ∪ E(S)). This set contains the
types that neither belongs to 〈U〉 nor are exchangeable.
By construction we get a partition 〈U〉 ∪ F (S) ∪ E(S) of
〈N〉. We then define the following function ϕ : 〈N〉 7→ R,
where u is a job of type maxU and u is a job of type minU :

ϕ(i) =

 p(S) + pi if i ∈ 〈U〉
p(Si) if i ∈ F (S)
p(Si) + pu if i ∈ E(S)

Clearly ϕ is injective on each part of the partition,
as p is injective on 〈N〉. In addition, denoting γ and
γ the instant p(S) + pu and p(S) + pū, respectively, we
have ϕ(F (S)) ⊆ [0, γ) and ϕ(〈U〉) ⊆ [γ, γ]. Thus ϕ is
injective on 〈U〉 ∪ F (S). The fact that S is blocked along
with Property 1 shows that the image of this set under
ϕ is included into Γ(N). Thus condition |〈N〉| > |Γ(N)|
necessarily involves that 〈U〉 ∪ F (S) ⊂ 〈N〉, which
proves the first assertion of Lemma 1. Now consider
that conditions maxE(S) < minU holds. It results that
ϕ(E(S)) ⊆ (γ, p(N)], and thus ϕ is an injection on 〈N〉.
The same counting argument shows that there necessarily
exists a type x ∈ E(S) such that p(Sx) + pu /∈ Γ(N).
Thus partition Sx is not blocked as a job of type maxU
can be appended to it. This is true as long as type pu

is still present in Ux after the exchange, or, put in other
words, as long as set U is not reduced to singleton {u}.
Writing down that p(N) /∈ Γ immediately conduces to
|U | ≥ 2, which concludes the proof. �

Now to conclude proof of Theorem 2, assume for the
sake of contradiction that N ∪ ∅ is not a valid partition.
Among all valid partitions (at least ∅∪N is one), we choose
S ∪ U maximizing |S|, and of minimal size p(S) among
all partitions of maximal cardinality. The maximality of
|S| implies that S is blocked. We claim that necessarily
max E(S) < min(U): indeed for any type x ∈ E(S), set
Sx defines a valid partition of cardinality |S| and of size
p(Sx) = p(S)+ pu− px; the minimality of p(S) among the
partitions of the same cardinality imposes that px ≤ pu.
Thus we are in the conditions stated by Lemma 1. It
implies that there exists x such that Sx∪{ū} defines a valid
partition, with ū a job of type max U . This contradicts the
maximality of |S|, and achieves the proof of Theorem 2.

4. Polynomial time algorithms

Theorem 2 proves the existence of a schedule without
idle time if a set of jobs contains more types than the
number of forbidden instants. In this part, we derive an
algorithm to construct such a schedule. The algorithm is a
simple hybridization between list scheduling algorithm and
local search. Basically the algorithm is constructive and
tries at each step to schedule a new job in a greedy manner.
If at some step no job can be scheduled without creating
some idleness, we then perform some job exchanges until
the current partial schedule is no more blocked. The pri-
ority given to the jobs in the greedy allocation does not
matter, thus we consider an arbitrary list L. Nevertheless,
for efficiency reasons, we assume that jobs of the same type
have the same priority.

We have to show how a small number of exchanges al-
ways permit to obtain a partial schedule that is no more
blocked. The basic idea is to exchange at each step the
smallest unscheduled job u with the largest exchangeable
(scheduled) job x̄. We call such an exchange a min-max-
exchange. Using the vocabulary of previous section, if
(S, U) is a blocked partition, a min-max exchange consists
then in exchanging a job u of processing time minU with
a job x of processing time max E(S). These exchanges are
performed as long as S remains blocked and that minU <
max E(S). If S is blocked but minU > max E(S), we then
select a job x ∈ E(S) such that Sx is not blocked. We call
this later exchange an unblocking exchange. Notice that
Lemma 1 ensures that, if S is blocked, there does exist ex-
changeable jobs. It also ensures that if max E(S) < minU ,
an unblocking exchange is always possible. Next lemma
bounds the number of successive exchanges:

Lemma 2 At most k + 1 exchanges are needed to obtain
a non-blocked partition from any blocked partition.

Proof. Let (S1, U1), . . . , (Sl, Ul), (Sl+1, Ul+1) be the se-
quence of valid partitions constructed by iterating min-
max exchanges from an initial blocked partition (S0, U0).
By construction for each index i ≤ l− 1, partition (Si, Ui)
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is blocked and verifies minUi < max E(Si). The last par-
tition (Sl+1, Ul+1) is no more blocked. Notice that the
(l + 1)th exchange may be an unblocking exchange, while
the l first ones are min-max exchanges. For short let
αi = |〈Ui〉| be the number of types in Ui. We also de-
note by βi the number of types of processing times smaller
or equal to minUi, i.e. βi is the rank of type minUi fol-
lowing the non-decreasing order. It is easy to check that
αi and βi are non-decreasing function. More precisely for
all index i = 0, . . . , l − 1:

(1) either βi+1 = βi and αi+1 = αi + 1,
(2) or αi+1 = αi and βi+1 > βi.

To see this, recall that the exchange performed to trans-
form (Si, Ui) → (Si+1, Ui+1) is then a min-max exchange.
Let xi be the job selected in maxE(Si) to exchange with
ui of duration minUi. By definition of E(Si), type xi does
not belong to Ui. In addition xi has a larger processing
time than ui. If Ui contains more than one job of type ui,
after the exchange Ui+1 contains the same types as Ui plus
the new type xi, i.e. we are in situation (1). Otherwise ui

is the only job of type min Ui in Ui. Then clearly we have
minUi+1 > minUi, which corresponds to situation (2).

Now let µi = αi + βi. From what precedes µi is an
increasing series on [0, . . . , l], which involves that µl ≥ µ0+
l. Observe that for any subset V of 〈N〉, the rank of its
smallest type can be at most |〈N〉| − |〈V 〉|+ 1. Hence the
function that associates to V the index of its smallest type
plus its cardinality lies between 2 and |〈N〉|+ 1. It results
that l ≤ µl − µ0 ≤ |〈N〉| − 1, which establishes that at
most l + 1 ≤ |〈N〉| exchanges are performed.

To decrease the number of exchanges from |〈N〉| to
k + 1, we can restrict our attention to set F of the first
(k + 1) types. More precisely in each min-max exchange,
we select a job x of greatest processing time in set
E(S) ∩ F . Notice that if a partition is blocked, this set
can not be empty. In addition if minU /∈ F , an unblocking
exchange can then be performed. Otherwise min-max
exchanges will swap only jobs of F . By the previous
argument the number of exchanges is then bounded by
|〈F〉| = k + 1. �

If we design an algorithm on this simple principle, al-
ternating greedy allocation and min-max exchanges, one
difficulty arises when an exchange occurs at some step be-
tween a job x and u. Indeed if Theorem 2 ensures that
Sx can be scheduled without idle time, it gives no clue on
how to find such a schedule. To avoid (expensive) recursive
calls, we introduce the following notion:

Definition 2 A subset N ′ ⊂ N defines a L-partition if:
(1) set N ′ defines a valid partition,
(2) |Γ(N ′)| < |Γ(N)|,
(3) the remaining jobs of N\N ′ can be scheduled in time

interval [p(N ′), p(N)] by the list scheduling algorithm of
list L.

We represent such a L-partition by the couple (N ′, π),

where π is the sequence of jobs given by the list schedul-
ing algorithm. The L-partition problem consists, given N
and L, to find a L-partition (N ′, π). We can immediately
notice the following fact :

Remark 1. Given an algorithm for the L-partition prob-
lem running in time t(k, n), a schedule without idle time
for N can be found in time kt(k, n).

Consider Algorithm 1: as announced it mixes greedy
allocation with local exchanges of jobs. To deliver a L-
partition, it simply memorizes the valid partition obtained
after the last exchange. Before establishing the correctness
and the time complexity of the algorithm, we demonstrate
it on the instance of Figure 1. Using list L = (a, b, c, d),
jobs a and b are successively scheduled. We are then in
situation of Figure 3 with a blocked partition S = {a, b},
U = {c, d}.

a b

���� ����

5 7

c,d

0 8 10 12

Figure 3: The partial schedule obtained for list L = (a, b, c, d) on the
instance of Figure 1

The set of exchangeable jobs E(S) is reduced to single-
ton {a} since exchanging b and c would result in a non valid
partition completing on forbidden instant 7. We then per-
form a min-max exchange between job a and c. We are in
situation of Figure 4 with a new valid partition S′ = {b, c}.

b c

���� ����

3 5 7 10

d

a

0

Figure 4: The partial schedule obtained after exchanging a and c

Partition S′ is still blocked. As job c and d are of the
same type, only job b is exchangeable with d. The min-max
exchange of jobs b and d results in partition S′′ = {c, d}
which is not blocked. Jobs a and b are then appended to
the schedule by the list algorithm. We obtain the idle-
free schedule given in Figure 5. The algorithm returns
the L-partition (S′′, ab). In this example the L-partition
directly provides a feasible schedule as no forbidden instant
appears before time p(S′′).

Note that by definition of min-max exchanges the size
p(S) of the current valid partition decreases between 2 ex-
changes. Hence we can not assert that if S is a blocked par-
tition, after a series of exchanges the resulting non-blocked
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2 4 70 10 129

Figure 5: The final schedule. The corresponding L-partition is
({c, d}, ab)

partition S′ will obey |Γ(S′)| > |Γ(S)|. Such a property
would have bounded the total number of exchanges to ob-
tain a L-partition by O(k2). However we can assert that
this number is at most O(kn), as a new job is scheduled af-
ter each series of exchange. We have the following lemma:

Lemma 3 If N is a set of jobs verifying conditions of
Theorem 2, a L-partition of N can be found in time
O(k2n).

Proof. We first show that, if Algorithm 1 terminates,
it returns a L-partition. If no exchange occurred, by def-
inition N ′ = ∅ defines a L-partition, i.e. the greedy list
scheduling directly finds a schedule without idleness. Oth-
erwise the algorithm returns the set obtained after the last
exchange. At this step set S is blocked, and a job x ∈ E(S)
is exchanged with u. Notice that after the exchange, at
least job x remains to schedule, thus Sx ⊂ N . Moreover
by construction Sx is a valid partition, and the remain-
ing jobs can be scheduled according to list L without idle
time since no other partition is blocked afterwards. Fi-
nally, since S was blocked, necessarily time p(Sx) + px is
a forbidden instants. Hence we get a L-partition.

The fact that the algorithm always terminates is
ensured by Lemma 2: let us call a step either an exchange
between two jobs or the allocation of a job. Clearly we
have exactly n allocation steps. Since at least one alloca-
tion is done after each sequence of exchanges, Lemma 2
bounds the number of steps by O(kn). To obtain the time
complexity of the algorithm, we show that both allocation
and exchange step can be done in time O(k). Note that
L can be described has a vector of integers of dimension
|〈N〉|. More generally each subset can be represented by
a vector of types. For an allocation steps it is clearly
sufficient to scan the first k+1 non null types in L. With a
proper list data structure, this can be done in time O(k).
For an exchange step, we scan only the k + 1 smallest
types of set S as explained in Lemma 2 to determine
the set E(S) ∩ F . Checking if a type is exchange-
able can be done in constant time due to Property 1.
Thus an exchange step can also be achieve in time O(k). �

The condition that the number of types is greater than
the number of forbidden instants plays as we have seen an
import part in the analyze of the problem. This motivates
the following definition:

Definition 3 An instance (N,Γ) is said to be of large di-
versity if |〈N〉| > |Γ|, of small diversity otherwise.

Algorithm 1 L-partition Algorithm
Require: a set N of jobs and a set Γ of forbidden instants
Ensure: a L-partition (N ′,π)

mark all jobs unscheduled
set S = ∅ ; N ′ = ∅ ; π = ∅ // initialization
while an unscheduled job remains do

// perform local exchanges while S is blocked
while S is blocked do

if max E(S) > minU then // min-max exchange
select x ∈ E(S) of largest processing time

else // unblocking exchange
select x ∈ E(S) such that Sx is not blocked

end if
mark x unscheduled and u scheduled.
set S := Sx ; N ′ = Sx ; π = ∅

end while
// greedy list allocation
Select the first unscheduled job u in L such that p(S)+
pu /∈ Γ; mark u scheduled
set S := S ∪ {u}; π = π{u}

end while
return (N ′, π)

Theorem 3 Any instance of 1|Fse|Cmax of large diver-
sity can be solved optimally in time O(k3n).

Proof. If neither instant 0 nor p(N) belongs to Γ,
Theorem 2 proves that an idle free schedule exists. This
schedule can be found in time O(k3n) by Algorithm
L-partition due to Lemma 3 and Remark 1. Otherwise let
k1 be the first integer instant which is not forbidden, and
let k2 be the first integer instant greater than p(N) + k1

which is not forbidden. Obviously no feasible schedule
can complete before time k2. Let k′ = k2−k1− p(N). We
start the schedule at time k1 adding to N a dummy job
of duration k′. Thus we are in conditions of Theorem 2.
We find an idle free schedule completing at time k2.
Replacing each dummy job processing by an idle slot, we
obtain a feasible (and optimal) schedule for N . �

The general case needs to consider what happens for
small diversity instances. As problem 1|Fse|Cmax is NP-
hard, we can not hope to obtain a polynomial time al-
gorithm, not even a constant approximation algorithm, if
one believes that P 6= NP. However next lemma involves
that any list scheduling algorithm has an absolute error of
at most 2k:

Lemma 4 Any list scheduling algorithm delivers a sched-
ule of length at most p(N) + 2k.

Proof. Consider the last job, say l, of the schedule. Let
t be an idle instant. Due to the greedy allocation of the
algorithm, necessarily either t or t+pl belongs to Γ, other-
wise l should have been scheduled at time t. Hence the set
of idle instants is included in {γj , γj − pl | j ∈ 1, . . . , k},
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which is of cardinality at most 2k. �

The bound of Lemma 4 is tight: consider an instance
with only jobs of duration 1 and forbidden instants occur-
ring at each odd instant till time 2k − 1. This example
of course does not prove that 2k is a tight bound for the
absolute error. It could be investigated if a better bound
can be found, at least for particular lists. In this paper we
use this result to bound the value of the optimal makespan
and derive a polynomial time algorithm in the case where
the number of forbidden instants is a constant. We denote
by 1|k−Fse|Cmax this problem, when k is not part of the
input.

Theorem 4 Problem 1|k−Fse|Cmax is polynomial, i.e. if
the number of forbidden instants is a constant, an optimal
schedule can be found in polynomial time.

Proof. Consider an instance (N,Γ) of problem
1|k − Fse|Cmax. If |〈N〉| > |Γ|, Theorem 3 proves that
we can find an optimal schedule in linear time O(n).
Otherwise, in case of a small diversity instance, we have
only a constant number of types. For short let us denote
by q ≤ k the number |〈N〉| of distinct processing times
appearing in the instance. We represent any subset
S ⊆ N by its multiplicity vector (s1, . . . , sq), where si is
the number of jobs of type i present in S. As in Billaut &
Sourd [2] we use dynamic programming to compute pred-
icate P(S, K) which equals true if and only if there exists
a partial schedule for S completing at time p(S) + K.
At the end we output the smallest value of K such that
predicate P(N,K) is verified. Due to Lemma 4 we can
restrict our attention to values of K ∈ {0, . . . , 2k − 1} (a
schedule of length at most p(N) + 2k can be obtained
by any list scheduling algorithm in linear time). Thus
the number of states of the dynamic program to compute
all predicates P(S, K) for S ⊆ N and K ≤ 2k − 1 is
2kΠq

i=1(ni + 1), where (n1, . . . , nq) is the multiplicity
vector of N . Each state P(S, K) can be computed in
time O(q) by considering which type (or idle slot) can
be scheduled in last position. Hence the running time
of the dynamic program is in O(2kq(n/q + 1)q). For k
a constant, this time complexity is bounded by O(nk),
which is a polynomial in n. �

Theorem 4 appeals to some comments. If the problem is
polynomial for a constant number k of forbidden instants,
an algorithm of time complexity in O(nk) can be used
in practice only for small values of n and k. Note that
in fact the dynamic programming algorithm runs in time
O(nq), where q is the number of types in the instance.
Thus for instances with a small number of types (2, 3, . . . )
the algorithm is efficient in practise. This time complexity
grows up to O(nk) as the number of types increases to k,
and then drops to O(n) if we have more than k + 1 types.
This gap legitimates in our opinion future researches for a
more efficient algorithm for small diversity instances.

5. High Multiplicity

The term High Multiplicity (HM for short) was intro-
duced by Hochbaum and Shamir [9] to refer to a compact
encoding of instances where identical jobs appear many
times. Compared to a traditional encoding where each
job is described, in a HM encoding each type is described
only once, along with its multiplicity (the number of jobs
of this type). Thus the size of a HM encoding depends
linearly on the number of types but only logarithmically
on the number of jobs. As a consequence a polynomial
time algorithm under the standard encoding may become
exponential under a HM encoding of the instances, which
is the case of our algorithms. HM scheduling and more
generally HM combinatorial optimization has become an
active domain in recent years [3, 6, 7].

Let x = (N,Γ) be a large diversity instance. We de-
note for short by q = |〈N〉| the number of types. Index-
ing types by decreasing order of their processing times,
set N is represented in HM encoding by its multiplic-
ity vector (n1, . . . , nq) together with the processing vec-
tor (p〈1〉, . . . , p〈q〉), where ni and p〈i〉 are the number of
jobs of the ith type and its processing time, respectively.
The size |x| of the instance under a HM encoding is thus
in Ω(q(log n + log p〈1〉) + k log γk). Hence |x| can be in
O(q log n) while algorithm L-partition runs in O(k3n),
which can be exponential with respect to |x|. Note that
an idle-free schedule π is simply a permutation of the jobs.
In HM scheduling, it may be not obvious to determine if
there exists (optimal) schedules with a compact encoding,
i.e. polynomial in |x|. For 1|Fse|Cmax it is readily that
the schedule of the jobs between two forbidden instants is
meaningless, and thus the jobs of the same type can be
scheduled consecutively. As a consequence any idle-free
schedule has a polynomial encoding as a sequence of cou-
ples (il, αl), where il designates a type and αl the number
of jobs of this type scheduled consecutively. We use this
representation inside this section.

To achieve a polynomial time algorithm, we need two
ingredients. Firstly, we can not afford to allocate only one
job at a time. Secondly, we have to design a more efficient
approach than L-partition. To cope with the latter point,
consider a partial schedule π, completing at time t. We
say that π is an optimal prefix if there exists an optimal
schedule of the form πσ. In this situation, the problem
reduces to finding an optimal schedule starting at time t
on the remaining set N ′ of jobs. Notice that algorithm
L-partition finds an optimal suffix, with the drawback of
computing a potentially long sequence of valid partitions
to obtain it. Now how can we assert that a partial schedule
π is an optimal prefix? The response is quite simple: due
to Theorem 2, a sufficient condition if that π is idle-free,
and that the remaining instance (N ′,Γ′ = Γ ∩ [t,+∞]) is
a large diversity instance. Based on these ideas, we derive
Algorithm 2.

We give here a comprehensive description of this algo-
rithm. The basic idea is to reduce the instance to have
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Algorithm 2 Optimal Prefix Algorithm
Require: a large diversity instance (N ,Γ) with types in-

dexed in decreasing order.
Ensure: an optimal prefix π

set mi = ni − 1 if i ≤ |Γ|+ 1, mi = ni otherwise
set i = 1 ; t = 0 ; π = ∅
while i ≤ |〈N〉| and t + mip〈i〉 < γ1 do

// Append to π all the mi jobs of type i
π = π(i, mi) ; t = t + mip〈i〉 ; i = i + 1

end while
if i > |〈N〉| then

return π // Only |Γ|+ 1 jobs remains to schedule
end if
// Append as many as possible jobs of type i before γ1

α = d(γ1 − t)/p〈i〉e − 1 ; π = π(i, α) ; t = t + αp〈i〉 ;
// Extend π to complete after time γ1

for all l ∈ 1, . . . , |Γ|+ 1 such that t + p〈l〉 ≥ γ1 do
if t + p〈l〉 /∈ Γ then

return π(l, 1)
end if

end for
for all l ∈ 2, . . . , |Γ|+ 1 such that t + p〈l〉 < γ1 do

if t + p〈l〉 + p〈1〉 /∈ Γ then
return π(l, 1)(1, 1)

end if
end for

only one job of each type and only |Γ|+1 types, such that
Algorithm 1 can be used efficiently. Initially one job of
each of the |Γ| + 1 largest types is put aside in order to
control the number of types. Let F be this set, and let
us call additional jobs the set N\F . We schedule then
iteratively all the additional jobs of type 1, then all the
additional jobs of type 2, . . . , as long as they all fit before
the first forbidden instant γ1. When this process termi-
nates, either only set F remains to schedule, or there is
not enough room left before γ1 to schedule all the addi-
tional jobs of the ith type. In the latter case the algorithm
schedules as much as possible of jobs of type i before γ1,
and tries to cross forbidden instant γ1. Our second idea is
here to ensure that the schedule of each job of F permits to
cross at least one forbidden instant in order to keep a large
diversity instance. We claim that Algorithm 2 is correct,
i.e. delivers an optimal prefix π. In addition if (N ′,Γ′) is
the remaining instance to schedule, then (N ′,Γ′) is a large
diversity instance and:

1. either |Γ′| < |Γ|, i.e. we have strictly less forbidden
instants,

2. or |N ′| = |〈N ′〉| = |Γ|+ 1, i.e. all the remaining jobs
have distinct processing times.

In the first case, we recursively call the prefix algorithm on
instance (N ′,Γ′). The second case corresponds to the basis
of the recursion: we simply solve instance (N ′,Γ′) using
the L-partition algorithm. Since N ′ contains at most (k +
1) jobs, the running time of Algorithm 1 on this instance

is in O(k4). We prove our claim in the following theorem:

Theorem 5 Problem 1|Fse|Cmax is polynomial under
HM encoding for large diversity instances, and can be
solved in time O(k|〈N〉|+ k4)

Proof. Correctness of Algorithm 2. Let (N ′,Γ′)
be the instance remaining to schedule at the end of Algo-
rithm 2. Recall that F denotes a set with exactly one job
of the |Γ|+ 1 largest types of N . Let A = N\Z be the ad-
ditional jobs. If only set F remains to schedule at the end
of the algorithm, we are clearly in the second case of our
claim. Otherwise the algorithm has stopped the first loop
on a type i such that all its additional jobs has not enough
room left to fit before γ1. At this point, there remains
at least one unscheduled job of type i in A, and possibly
another in F , if i ≤ k + 1. Let t < γ1 be the current com-
pletion time of the schedule, and consider the partition
F = S ∪ L defined by L = {j ∈ F | t + pj ≥ γ1}. Notice
that L is not empty as t+ p〈i〉 ≥ γ1 ; in particular a job of
type 1 belongs to L. By construction Algorithm 2 tries to
extend π to complete after the first forbidden instant γ1,
which corresponds to the first case of our claim. We have
to prove that it will always succeed, and that (N ′,Γ′) is a
large diversity instance. Basically we show in the following
that if π completes after the lth forbidden instant, at most
l jobs of F have been scheduled in π. Indeed we then have
|〈N ′〉| ≥ |F | − l > |Γ| − l and |Γ′| ≤ |Γ| − l, which ensures
that (N ′,Γ′) is a large diversity instance. Consider the
last two loops of the algorithm. If one job of L can be
scheduled, the property clearly holds as π completes after
time γ1. If this is not possible, instant t + pj is forbidden
for all jobs j of L. By construction any job of S can be
scheduled before time γ1. Therefore a simple counting ar-
gument ensures that there exists a job s ∈ S that can be
scheduled at time t immediately followed by a job of type
1. If t + ps + p〈1〉 ≥ γ2, i.e. π completes after time γ2, we
are done. Otherwise, we have t + p〈1〉 < γ2. In this case
|Γ′| = |Γ| − 1, while we apparently use 2 jobs of F . How-
ever since instant t + p〈1〉 is forbidden by construction, in
fact we have t + p〈1〉 = γ1 and as a consequence i = 1. As
we noticed, there is at least one unscheduled job of type
i in A, i.e. we can use an additional job of type i = 1 to
schedule after s. Hence we have |〈N ′〉| ≥ |〈N〉| − 1 which
completes the proof of correctness of the algorithm.

Time complexity. We use the classic convention that
basic operations on integers (addition, division,. . . ) are
performed in constant time. Then the time complexity
of Algorithm 2 is in O(k + q), which is in O(q) for large
diversity instances. To solve Problem 1|Fse|Cmax, we call
Algorithm 2 on the set of unscheduled jobs as long as
there is still some forbidden instants in the future or that
this set is not reduced to F . Thus we have at most k calls
to Algorithm 2 as at least one forbidden instant is crossed
each time, possibly followed by a call to Algorithm 1 on
an instance containing at most k + 1 jobs. Therefore the
overall complexity is in O(k|〈N〉|+ k4). �
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Notice that Theorem 5 provides a better time complex-
ity that the one based exclusively on Algorithm 1 running
in time O(k3n), even for a traditionnal encoding of the
instances.

6. Extensions and conclusion

Finally we consider what we called the subcontractor
problem. We still have n independent jobs (the different
products of the same order) to schedule on a single re-
source. All the jobs are due to complete before a given
deadline D: a penalty d is charged for each day the sched-
ule is beyond this due date. In addition we have a set
Γ = {γ1, . . . , γk} of k instants where an overcost is in-
curred if a job starts or completes. We denote by c−j and
c+
j the overcost paid to complete, respectively to start, a

job at time γj . We can alternatively consider a joint over-
cost cj paid whatever we start, complete or start and com-
plete a job at time γj . This joint cost would correspond
to the ability to use an additional resource during instant
γj . Tardiness penalty d and resource overcosts c−j and
c+
j are assumed to be positive. The objective is to find a

schedule of minimal cost, counting tardiness penalties and
resource overcosts. Notice that the subcontractor prob-
lem captures the different variants of the makespan min-
imization problems with forbidden instants: for instance
by letting D = 0, d = 1 and c+

j = +∞, the problem is
equivalent to 1|Fs |Cmax as any finite cost solution corre-
sponds to a feasible schedule with forbidden start instants,
whose cost is clearly equal to the makespan. It happens
that our result for 1|Fse|Cmax can easily be extended to
the subcontractor problem:

Theorem 6 Results of Theorems 3, 4 and 5 apply to the
subcontractor cost minimization problem, i.e. large diver-
sity instances can be solved in time complexity O(k3n), and
the general problem is polynomial if k is a given constant.

Proof. For small diversity instances, we simply compute
function f(S, K) instead of predicate P(S, K), defined as
the minimal cost schedule of makespan p(S)+K for subset
S of jobs. Due to Lemma 4, the makespan of an optimal
cost schedule is at most p(N) + 2k. Hence the complexity
remains in O(nk). Note that for joint overcosts, we can
add to states (S, K) a flag bit to indicate if the overcost is
yet paid for instant p(S) + K.

Now consider a large diversity instance. Clearly if
neither instant 0 nor p(N) has overcost, there exists a
schedule completing at time p(N) without paying any
overcost. This schedule is clearly optimal and is found in
time O(k3n) by Algorithm 1. More generally let k1 be the
first instant such that c+

k1
= 0. It may be advantageous (if

tardiness penalty is high) to pay an overcost to start the
schedule earlier than instant k1. Let s∗ and t∗ ≥ p(N) + s
be respectively the starting time and completion time of
an optimal schedule. The cost of the schedule is then

c+
s∗ +c−t∗ +d max{t∗−D, 0}, i.e. no overcost is paid except

possibly at instants s∗ and t∗. Such a schedule is found by
Algorithm 1 starting at time s∗ and using a dummy job
of duration t∗ − p(N) − s∗. Notice that guessing s∗ and
t∗ can be done in time O(k2) by inspection considering
all possible couples (s, t) in [0, k1] × [p(N), p(N) + k].
However this time complexity can be easily reduced to
O(k). Let us denote by OPT (s) the minimal cost among
all schedules starting at time s. Let us also introduce
ξ(u) = min{c−t + d max{t − D, 0} | u ≤ t ≤ p(N) + k}.
From what precedes we have OPT (s) = c+

s + ξ(s + p(N)).
Since all values of ξ(u) for u = p(N), . . . , p(N) + k can
be computed by accumulation in time O(k), determin-
ing s∗ minimizing OPT (s) can be achieve in time O(k). �

Note that without modifying the time complexity of
our algorithm we could consider any tardiness penalty
function l(T ) for the schedule instead of the linear
function l(T ) = dT , where T = max{Cmax − D, 0}. We
only require that l(T ) is positive and can be computed
in constant time, possibly through an oracle. This allows
to handle practical problems where the penalties grows
faster than linearly, for instance in dT 2.

In this paper we have considered the scheduling of in-
dependent jobs on a single resource where k forbidden (or
overcost) instants appear. We proved that an idle-free
schedule always exists if the number of distinct processing
times is at least k+1. For such so called large diversity in-
stances we derive a strongly polynomial algorithm running
in time O(k|〈N〉|+ k4). Even if this complexity is quite
low, a first perspective of this work would be to improve
it. Notice that in Algorithm 2 the term in O(k4) is due to
the resolution (by Algorithm 1) of instances with k+1 dis-
tinct jobs. Thus one could investigate faster algorithms for
large diversity instances with all distinct processing times.
As a possible way to achieve this, the complexity analy-
sis of L-partition algorithm can be refined, or improved
considering a particular priority list.

As another consequence of Theorem 2, we showed that
problem 1|k − Fse|Cmax where k is a fixed constant can
be solved in time O(nk). As we mentioned earlier, in this
case an instance with (k + 1) types can be solved in lin-
ear time while an instance with k types requires a time
complexity of O(nk). This gap motivates to design more
efficient algorithms for small diversity instances, certainly
using the strong result on the existence of idle free schedule
for large diversity instances to develop a divide & conquer
approach. Another related question would be to determine
if the problem remains polynomial if we are less restrictive
on the number of forbidden instants, say for instance if k
is polylogarithmically bounded by n. Nevertheless, as the
problem on small diversity instances is NP-hard, it would
also be of interest to develop fast algorithms to solve the
problem with a small absolute error. We note that the
absolute error of any list schedule is at most 2k. We can
wonder if a polynomial time algorithm can have an ab-
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solute error of 1 if for instance we have k different types.
Finally it would be of particular interest to study the com-
plexity status of 1|k−Fse|Cmax under a High Multiplicity
encoding. The question is let open if the problem remains
polynomial under a compact encoding.
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