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Abstract

In a graph G = (V, E), the density is the ratio between the number of edges |E| and the
number of vertices |V |. This criterion may be used to find communities in a graph: groups
of highly connected vertices. We propose an optimization problem based on this criterion,
the idea is to find the vertex partition that maximizes the sum of the densities of each
class. We prove that this problem is NP-hard by giving a reduction from graph-k-colorability.
Additionally, we give a polynomial time algorithm for the special case of trees.

1 Introduction

Let G = (V,E) be a simple connected undirected graph; the density of G is given by d(G) = |E|
|V | .

Let X ⊆ V and E(X) = {{u, v} ∈ E, u ∈ X, v ∈ X}. The subgraph induced by X is G[X] =
(X,E(X)) and the complement graph G is the graph on V with the edge set E = V ∗ V \ E.
Let Π be the set of all the partitions of V with no empty class. The density (in the definition of
Goldberg [1]) of a partition P ∈ Π is given by:

d(P ) =
∑
X∈P

d(G[X]) =
∑
X∈P

|E(X)|
|X|

One can note that this definition is different from the definition of Szemerédi [2], where the density
is the ratio 2|E(X)|

|X|(|X|−1) . The sparsity of a partition P ∈ Π is given by:

F (P ) =
|P |
2

+ d(P )

Notice that maximizing the density of a partition P in a graph G is equivalent to minimizing
the sparsity in the complement graph G. The proof is presented in the next section.

The usual optimization problem associated with the density, is to find a subset of vertices
that maximizes it. This problem is solved in polynomial time using flow techniques [1] or linear
programming [3]. When the number of vertices in the subgraph is part of the input, the problem
becomes NP-hard [4].

The sparsity is a less classical objective function. When the number of classes is fixed |P | = k,
the problem of minimizing F is equivalent to the minimization of the famous k-means criterion
(see for instance [5, 6]). In this case the number of edges in a class is replaced by the sum of their
weight in the definition of the density. This problem is shown to be NP-hard when the edges are
weighted by the n dimensional Euclidean distance [7, 8].

In this paper we show that maximizing the density of a graph is equivalent to minimizing the
sparsity of the complement graph. We also derive some results about the NP-hardness (Theorem 1)
and the non-approximability (Theorem 2) of these problems. We finally give a polynomial time
algorithm for the maximization of the density on a tree (Theorem 3).

The density can be used as a fitness function in the area of community detection. Many em-
pirical problems can be modelled as networks that divide naturally into communities, for instance
proteins interactions, social interactions... [9, 10, 11]. Intuitively, a community is a set of nodes
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that are highly connected and only have a few links with nodes from the outside. Finding such
groups provides help in understanding and visualizing the structure of the network. The gen-
eral problem of community detection is widely studied and various models have been proposed
[12, 13, 14].

We faced this problem of community detection while analyzing data for clinical research in
medicine. We used the Logical Analysis of Data [15] method where a large set of patterns is
generated, a pattern being the characteristics of patients having similar properties for the studied
pathology. Our objective was to group patterns representing almost the same sets of patients in
order to decrease the size of the problem. This is modeled as community detection in a graph
where each vertex is a pattern and an edge connects two vertices corresponding to similar patterns.

The paper is structured as follows: Section 2 describes notations and gives some properties
on the density and the sparsity. Section 3 discusses the hardness and the non-approximability of
minimizing the sparsity. Section 4 gives a polynomial time algorithm on trees.

2 Preliminaries

For the sake of clarity we recall some notions of graph theory and matching theory. All the
definitions and theorems can be found in [2]. A path is a non-empty graph P = (V,E) of the form
V = {x0, x1, ..., xn} and E = {x0x1, x1x2, ...xn−1xn}. Let us denote by Pn a path containing n
edges. A star is a tree where at most one vertex have degree greater than 1. A matching in an
undirected simple graph is a set of pairwise distinct edges. A vertex is covered by a matching if it
is incident to one edge of the matching. A matching M is called a perfect matching if all vertices
are covered by M . A vertex cover in G is a set S ⊆ V such that every edge of G is incident to at
least one vertex in S. A path P = (V,E) in a graph G is an alternating path with respect to a
matching M if E \M is a matching. An alterning path is an augmenting path if its endpoints are
not covered by M . We give two classical theorems in matching theory (proofs omitted):

Theorem (König). Let G be a bipartite graph. Then the maximum cardinality of a matching in
G is equal to the minimum cardinality of a vertex cover.

Theorem (Berge). Let G be a graph with a matching M . Then M is maximum if and only if
there is no augmenting path.

Let us define formally the decision problems we consider in the rest of the paper.

Dense Graph Partition
Instance: An undirected graph G = (V,E) and a positive rational D
Question: Is there a partition P ∈ Π such that d(P ) ≥ D?

Sparse Graph Partition
Instance: An undirected graph G = (V,E) and a positive rational D
Question: Is there a partition P ∈ Π such that F (P ) ≤ D?

Graph-k-Colorability
Instance: An undirected graph G = (V,E)
Question: Is there a partition P ∈ Π such that |P | = k and for all X ∈ P , G[X] is a stable set?

We also consider the optimization versions of these problems which will be prefixed by Min or
Max. For instance:

Min Sparse Graph Partition
Instance: An undirected graph G = (V,E)
Solution: A partition P ∗ ∈ Π such that F (P ∗) ≤ F (P ), ∀P ∈ Π.
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Figure 1: A partition of the cycle on 5 vertices with sparsity less than 3
2 . The vertex classes are

represented by circles and squares

A first observation shows that maximizing the density is equivalent to minimizing the sparsity
using a simple transformation on the instance.

Property 1. The optimization problem Max Dense Graph Partition of a graph G is equiv-
alent to Min Sparse Graph Partition on G the complement graph of G.

Proof. Let E(X) be the set of edges of the complement graph induced by the set of vertices X.
One can rewrite the density of P in G using the set of edges of G.

d(P ) =
∑
X∈P

|E(X)|
|X| =

∑
X∈P

|X|(|X|−1)
2 − |E(X)|

|X| =
∑
X∈P

|X| − 1
2

− |E(X)|
|X|

=
n

2
− |P |

2
−
∑
X∈P

d(G[X])

Thus dG(P ) = n
2 − FG(P ) with FG(P ) being the sparsity of the complement graph G.

Since the two problems are equivalent we focus on minimizing the sparsity of a graph G. Every
colouring of G is a feasible solution and thus we obtain the following upper bound:

Property 2. Let χ(G) denote the chromatic number of a graph G and P ∗ a partition of V that
minimizes F . Then we have the following inequality:

F (P ∗) ≤ χ(G)
2

Proof. Let P be the partition associated with a χ(G)-colouring of G where each color is a class
of P . Since each class of P is a stable set, its density is equal to 0 and F (P ) = χ(G)

2 . Since
F (P ∗) ≤ F (P ) the inequality holds.

Notice that the bound is not always tight. For instance in the cycle on 5 vertices the optimal
colouring uses 3 classes but there exists a partition of V of cardinality 2 with F (P ) = 1 + 1

3 < 3
2

(see Figure 1).

3 NP-hardness and non-approximability

We show that the problem Sparse Graph Partition is NP-complete by giving a reduction from
Graph-k-colorability. The decision problem Graph-k-colorability is known to be NP-
complete (see for instance [16]). Since Sparse Graph Partition and Dense Graph Partition
are equivalent by Property 1, it implies that Dense Graph Partition is also NP-complete. We
first describe a graph transformation and a useful property for the reduction.
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Figure 2: The graph C2
5

Let G be a simple undirected graph, we define Gq the graph constructed from G where each
vertex v is replaced by a stable set of cardinality q: {v1 v2 ... vq}. Each edge (i, j) of G is replaced
by the complete bipartite subgraph: ({i1 ... iq}, {j1 ...jq}); for instance the graph C5 of Figure 1
is transformed into the graph C2

5 in Figure 2. This transformation intends to increase the density
without changing the chromatic number.

Lemma 1. Let χ(G) and χ(Gq) be the chromatic numbers of G and Gq. Then χ(G) = χ(Gq).

Proof. The inequality χ(Gq) ≤ χ(G) is trivial since any colouring of G gives a colouring for
Gq. Suppose now that χ(Gq) < χ(G) then by keeping one vertex in each (v1...vq) we obtain a
colouring of G with less than χ(G) colors, which is a contradiction. Thus χ(Gq) ≥ χ(G) and hence
χ(G) = χ(Gq).

Now we show a reduction from Graph-k-colorability to Sparse Graph Partition that
uses the previous transformation.

Theorem 1. The Sparse Graph Partition problem is NP-complete.

Proof. It is easy to see that Sparse Graph Partition is in NP since there exists a non deter-
ministic algorithm that can guess a partition P ∈ Π and verify that F (P ) ≤ D in polynomial
time.

Let us consider an instance G of Graph-k-colorability. If G has less than k vertices then
we are done. Else we transform G into an instance of Sparse Graph Partition in polynomial
time as follows.

Given a graph G on n vertices, we build the graph Gq with q = n4. We claim that there exists
a k-colouring of G if and only if there exists a partition P of Gq such that F (P ) ≤ k

2 .
Clearly, from a k-colouring of G one can derive a k-colouring of Gq. Hence from Property 2

there exists a partition P of the vertices of Gq with F (P ) ≤ k
2 .

Conversely, suppose that we have a partition P of Gq such that F (P ) ≤ k
2 ≤ n

2 , this implies
|P | ≤ k. Consider an edge (i, j) of G and the sets of vertices I = {i1, ..., iq} and J = {j1, ..., jq}
of Gq. By the pigeonhole principle there exists a class CI of P containing more than q

k ≥ q
n = n3

vertices from I. Let SI be the set of vertices of I in CI . Using the same argument, there exists a
class CJ containing more than n3 vertices from J. If CI = CJ then d(CI) = |E(CI)|

|V (CI)| ≥ |E(CI)|
|V (Gq)| ≥

n3.n3

nq ≥ n ≥ k > k
2 and F (P ) ≥ d(CI) > k

2 which is a contradiction. Thus for each edge (i, j) of
G, the sets SI and SJ belong to different classes of P . One can construct a proper colouring with
k colors of G using the partition P of Gq and the set SU for each vertex u.

Using slight modifications on the previous proof, we have the following theorem on the approx-
imabilty of Min Sparse Graph Partition:
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Theorem 2. There is no polynomial-time r-approximation algorithm to Min Sparse Graph
Partition problem for some constant r unless P = NP .

Proof. Assume that a polynomial time algorithm can find a partition P such that F (P ) ≤ rF (P ∗).
Using the same proof as Theorem 1 with q = rn4 one can obtain a r-approximation of χ(G) for
every graph G using the r-approximation algorithm on Gq. Consider an edge (i, j) of G and assume
that the classes CI and CJ are the same in P . Then F (P ) ≥ d(CI) ≥ rn > r χ(Gq)

2 ≥ rF (P ∗)
which is a contradiction. Then SI and SJ belong to different classes of P and one can construct
a proper colouring of G using |P | ≤ rχ(G) colors. This reduction preserves approximation and
since Min Graph Colouring does not belong to APX [17], Min Sparse Graph Partition is
not in APX either.

4 The polynomial case of trees

We give a polynomial time algorithm for the maximization of the density but first we derive some
properties:

Property 3. Let T be a tree such that |V | > 1 then we have:

d(T ) =
m

n
=

n− 1
n

= 1− 1
n

From this equality we can derive an upper bound on the density of any tree T : d(T ) < 1 and a
lower bound d(T ) ≥ 1

2 .

The following lemmas describe the structure of an optimal dense partition. They show that
each class of P ∗ is a star.

Lemma 2. Let G be a connected graph and P ∗ an optimal dense partition. Then for any class X
of P ∗, the graph G[X] is connected.

Proof. If G[X] is not connected in a partition P , one can construct a new partition P ′ by replacing
X by a new class for each connected component X1, ...,Xk of G[X]. The new partition is better
than P :

d(P ′)− d(P ) =

(
k∑

i=1

|E(Xi)|
|Xi|

)
−
(∑k

i=1 |E(Xi)|∑k
i=1 |Xi|

)
≥ 0

since ∀ ai ≥ 0, bi > 0 we have
∑

i

(
ai

bi

)
≥

P
i aiP
i bi

.

Lemma 3. Let T be a tree and P ∗ an optimal partition. Then no class of P ∗ contains only an
isolated vertex.

Proof. Suppose there exists C ∈ P ∗ such that C = {u} with u ∈ V . Since T is connected, there
exist v such that {u, v} is an edge. Suppose that v ∈ C ′ and let C ′′ = C ′∪C. Since C ′ is connected
C ′′ is also connected. Then one has d(C ′′) − d(C ′) − d(C) = |C′|

|C′|+1 − |C′|−1
|C′| > 0 and P ∗ is not

optimal.

Lemma 4. Let T be a tree and P ∗ an optimal partition. Then for any class X of P ∗, the graph
G[X] does not contain a path of length 3.

Proof. Suppose there exists X ∈ P ∗ such that {u, r, s, t} ⊆ X and (u, r, s, t) is a P3. By removing
the edge (r, s) we create two connected components X ′ and X ′′. Since G[X], G[X ′] and G[X ′′]
are trees we have the following inequalities d(X) < 1 and d(X ′) + d(X ′′) ≥ 1

2 + 1
2 and P ∗ is not

optimal.

As a corollary, we get:
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Corollary 1. Let T be a tree and P ∗ an optimal partition. Then for each X a class of P , G[X]
is a star.

The following properties give upper bounds on the density of a bipartite graph and on a densest
partition.

Property 4. Let G = (V1 ∪ V2, E) be a bipartite graph. Then d(G) ≤ n
4 .

Proof. We derive an upper bound on the density in the case of bipartite graphs:

d(G) =
m

n1 + n2
≤ n1n2

n1 + n2
≤ n1 + n2

4

The first inequality is trivial and the second one comes from:

(n1 + n2)2 − 4n1n2 = (n1 − n2)2 ≥ 0

Since every subgraph of a bipartite graph is bipartite, one can derive an upper bound for the
density of the partition. For each class X of P ∗, we have d(X) ≤ |X|

4 and since P ∗ is a partition
of the vertex set we have the following:

Property 5. If G = (V1 ∪ V2, E) is a bipartite graph, then the following inequality holds:

d(P ∗) =
∑

X∈P∗
d(X) ≤

∑
X∈P∗

|X|
4

=
n

4

Notice that the bound is tight if G admits a perfect matching. It shows a link between the
classes of P ∗ and a perfect matching of a bipartite graph. In the case of trees the link is stronger
as stated in the next lemma.

Lemma 5. Let M∗ be a maximum cardinality matching of T and P ∗ an optimal dense partition.
Then |M∗| = |P ∗|.
Proof. The inequality |M∗| ≥ |P ∗| comes from Corollary 1. Indeed one can construct a matching
M by choosing an edge in each class of P ∗. Now we show that M is a maximum matching. By
way of contradiction, if not, then by Berge Theorem there exists an augmenting path. Let C be
a minimum (in the number of edges) augmenting path and u, v its extremities.

We show that u and v cannot be in the same class. If C 6= (u, v), then C has a length greater
than 3 and u and v belong to different classes according to Lemma 4. If C = (u, v) since u and
v are not covered by the matching then they belong to different classes otherwise it contradicts
Corollary 1. Furthermore, their classes contain at least 3 vertices, otherwise u and v would be
covered by the matching. Let Xu (resp. Xv) be the class of u (resp. v) and let x ∈ Xu (resp.
y ∈ Xv) be the closest vertex to v (resp. u) on C (note that x could be u and y could be v). Since
x and y belong to different classes then x 6= y. Let Cxy be the subpath of C from x to y. We
denote by a (resp. b) the neighbour of u (resp. v) on C.

Since C is minimum every vertex of C \{a, b} has a degree at most two in the subgraph induced
by its class. Indeed u (resp. v) is not saturated by the matching and since Xu (resp. Xv) is a star,
the degree of u (resp. v) in Xu (resp. Xv) is one. If the degree of at least one of the remaining
vertices is greater than two then there exists a smaller augmenting path which is in contradiction
with the minimality of C.

Let M ′ be the matching obtained from M by exchanging the edges on the augmenting path.
Now we create a new partition P ′ from P ∗ by removing x from Xu and y from Xv. Each edge of
C that is not in M forms a new class of P ′. Notice that the neighbours of a (resp. b) which were
in Xa (resp. Xb) and that do not belong to C are in the new class of a (resp. b).

Since (u, a) and (v, b) are in M ′ and since u 6= v, we have a 6= b and X ′
a the class of a in P ′ is

different from X ′
b the class of b in P ′. Thus all classes of the partition P ′ are stars.
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XvXu

u v
x y

a b

Figure 3: Example of an augmenting chain and a partition transformation on a tree with 5 edges
in C and |Xu| = 3, |Xv| = 4, v = y and u 6= x. Each class of P is represented by circled vertices,
the edges of M are represented by dashed lines.

During this process, Xu and Xv lose one vertex and a new class is created. Thus ∆ =
d(P ′) − d(P ∗) = 1

2 − 1
|Xu|(|Xu|−1) − 1

|Xv|(|Xv|−1) with |Xu| and |Xv| greater or equal to 3. Thus
∆ > 0 and P ∗ is not optimal.

Using some classical results in graph theory we have the following corollary:

Corollary 2. Let T ∗ be a minimum vertex cover and P ∗ an optimal dense partition. Then each
class of P ∗ contains exactly one vertex of T ∗.

Proof. From Corollary 1 we know that each class of P ∗ is a non trivial star. Thus each class of
P ∗ contains at least a vertex of T ∗. Since from Lemma 5 and König’s theorem we have

|P ∗| = |M∗| = |T ∗|

then each class of P ∗ contains exactly one vertex of T ∗.

Let T be a rooted tree in u and let Ti be the subtree induced by i a child of u and its
descendants. Let F ′

i be the forest induced by the vertices of Ti\{i}, see Figure 4. The basic idea
is to construct the densest partition of T by a recursive construction using the densest partition
of Ti and F ′

i . This algorithm gives the following theorem.

Theorem 3. The problem Max Dense Graph Partition is polynomial on trees.

Proof. Let T ∗ be a minimum vertex cover on T and W ⊆ V be the set of the children of u. Remark
that the computation of T ∗ is polynomial on trees.

Suppose that u ∈ T ∗, then u has two types of children: W ′ = W\T ∗ and W ∩ T ∗. By
Corollary 2, u and another vertex of T ∗ cannot be in the same class in an optimal partition of T .
For the children of u that are in T ∗ we use the optimal partition of their subtrees.

Thus we only consider the children of u that are in W ′ and that are not isolated (isolated
vertices have to be in the class of u). Let ∆i be the difference between the value of the optimal
partition of Ti and the value of the optimal partition of F ′

i . It is clear that ∆i > 0. We create an
order on W ′ defined by i ≺ j if ∆i < ∆j . Let Xu be the class containing u in P ∗ an optimal dense
partition of T . If j ∈ Xu then ∀i ∈ W ′ such that i ≺ j we have i ∈ Xu, otherwise by exchanging
i and j in Xu one can create a new partition P ′ of T and d(P ′) − d(P ∗) = ∆j −∆i > 0 and P ∗

is not optimal. The class Xu can be constructed by adding each i ∈ W ′ using the order ≺ until
d(Xu ∪ {j}) − d(Xu) < ∆j . The optimal partition of T is obtained by the class Xu, the optimal
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u

i

Ti

F ′
i

Figure 4: A rooted tree in u with a child i, a subtree Ti and the forest F ′
i .

partition of F ′
i for each i ∈ Xu\{u} and the optimal partition of Tj for each j a child of u that is

not in Xu.
Now suppose that u /∈ T ∗ then all the children of u are in T ∗. By Corollary 2, u must be in

the class of one of its children. For each i a child of u, consider the tree Tu
i consisting of Ti, the

vertex u and an edge between u and i. Using the same argument as in the previous paragraph one
can obtain its densest partition. The densest partition of T is obtained by adding u to the class
of its child that leads to the densest partition and by taking the densest partition of the tree Ti

for all the other children i of u.
Finally, one can obtain the optimal partition of F ′

u with the optimal partition of each Ti. By
applying this procedure from the leaves to the root, one can obtain the densest partition of a
rooted tree T .

5 Conclusion

In this paper we presented some hardness results on maximizing the density of a vertex partition.
We showed that this problem is equivalent to minimize the sparsity of a vertex partition. The-
orem 1 states that these two problems are NP-hard and Theorem 2 gives a non-approximability
result. Due to the strong link with the Min Graph Colouring problem in the reduction, it
should be interesting to study Min Sparse Graph Partition on special classes of graph for
which the graph colouring problem is easy. In Section 4, we give a polynomial time algorithm for
Max Dense Graph Partition on trees. The next step would be the extension of these results
to bipartite graphs. From a more practical point of view some empirical tests could be done to
study the behavior of the density in the context of community detection.
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