Packing of Rigid Spanning Subgraphs and Spanning Trees

Joseph Cheriyan, Zoltán Szigeti, Olivier Durand de Gevigney
Packing of Rigid Spanning Subgraphs and Spanning Trees

Joseph Cheriyan
Olivier Durand de Gevigney
Zoltán Szigeti

December 15, 2011

Abstract

We prove that every \((6k + 2\ell, 2k)\)-connected simple graph contains \(k\) rigid and \(\ell\) connected edge-disjoint spanning subgraphs. This implies a theorem of Jackson and Jordán [4] and a theorem of Jordán [6] on packing of rigid spanning subgraphs. Both these results are generalizations of the classical result of Lovász and Yemini [9] saying that every 6-connected graph is rigid for which our approach provides a transparent proof. Our result also gives two improved upper bounds on the connectivity of graphs that have interesting properties: (1) every 8-connected graph packs a spanning tree and a 2-connected spanning subgraph; (2) every 14-connected graph has a 2-connected orientation.

1 Definitions

Let \(G = (V, E)\) be a graph. We will use the following connectivity concepts. \(G\) is called connected if for every pair \(u, v\) of vertices there is a path from \(u\) to \(v\) in \(G\). \(G\) is called \(k\)-edge-connected if \(G - F\) is connected for all \(F \subseteq E\) with \(|F| \leq k - 1\). \(G\) is called \(k\)-connected if \(|V| > k\) and \(G - X\) is connected for all \(X \subseteq V\) with \(|X| \leq k - 1\). For a pair of positive integers \((p, q)\), \(G\) is called \((p, q)\)-connected if \(G - X\) is \((p - q|X|)\)-edge-connected for all \(X \subset V\). By Menger theorem, \(G\) is \((p, q)\)-connected if and only if for every pair of disjoint subsets \(X, Y\) of \(V\) such that \(Y \neq \emptyset, X \cup Y \neq V\),

\[
d_{G - X}(Y) \geq p - q|X|. \tag{1}
\]

For a better understanding we mention that \(G\) is \((6, 2)\)-connected if \(G\) is 6-edge-connected, \(G - v\) is 4-edge-connected for all \(v \in V\) and \(G - u - v\) is 2-edge-connected for all \(u, v \in V\). It follows from the definitions that \(k\)-edge-connectivity is equivalent to \((k, k)\)-connectivity. Moreover, since loops and parallel edges do not play any role in vertex connectivity, every \(k\)-connected graph contains a \((k, 1)\)-connected simple spanning subgraph. Note also that \((k, 1)\)-connectivity implies \((k, q)\)-connectivity for all \(q \geq 1\). (Remark that this connectivity concept is (very slightly) different from the one introduced by Kaneko and Ota [7] since \(p\) is not required to be a multiple of \(q\).)
Let $D = (V, A)$ be a directed graph. D is called strongly connected if for every ordered pair $(u, v) \in V \times V$ of vertices there is a directed path from u to v in D. D is called k-arc-connected if $G - F$ is strongly connected for all $F \subseteq A$ with $|F| \leq k - 1$. D is called k-connected if $|V| > k$ and $G - X$ is strongly connected for all $X \subset V$ with $|X| \leq k - 1$.

For a set X of vertices and a set F of edges, denote G_F the subgraph of G on vertex set V and edge set F, that is $G_F = (V, F)$ and $E(X)$ the set of edges of G induced by X. Denote $\mathcal{R}(G)$ the rigidity matroid of G on ground-set E with rank function $r_{\mathcal{R}}$ (for a definition we refer the reader to [9]). For $F \subseteq E$, by a theorem of Lovász and Yemini [9],

$$r_{\mathcal{R}}(F) = \min \sum_{X \in \mathcal{H}} (2|X| - 3),$$

where the minimum is taken over all collections \mathcal{H} of subsets of V such that $(E(X) \cap F, X \in \mathcal{H})$ partitions F.

Remark 1. If \mathcal{H} achieves the minimum in (2), then each $X \in \mathcal{H}$ induces a connected subgraph of G_F.

We will say that G is rigid if $r_{\mathcal{R}}(E) = 2|V| - 3$.

2 Results

Lovász and Yemini [9] proved the following sufficient condition for a graph to be rigid.

Theorem 1 (Lovász and Yemini [9]). Every 6-connected graph is rigid.

Theorem 2 (Jackson and Jordán [4]). Every (6, 2)-connected simple graph is rigid.

Theorem 3 (Jordán [6]). Let $k \geq 1$ be an integer. Every $6k$-connected graph contains k edge-disjoint rigid spanning subgraphs.

The main result of this paper contains a common generalization of Theorems 2 and 3. It provides a sufficient condition to have a packing of rigid spanning subgraphs and spanning trees.

Theorem 4. Let $k \geq 1$ and $\ell \geq 0$ be integers. Every $(6k + 2\ell, 2k)$-connected simple graph contains k rigid spanning subgraphs and ℓ spanning trees pairwise edge-disjoint.

Note that in Theorem 2, the connectivity condition is the best possible since there exist non-rigid (5, 2)-connected graphs (see [9]) and non-rigid (6, 3)-connected graphs, for an example see Figure 1.
Let us see some corollaries of the previous results. Theorem 4 applied for \(k = 1\) and \(\ell = 0\) provides Theorem 2. Since \(6k\)-connectivity implies \((6k, 2k)\)-connectivity of a simple spanning subgraph, Theorem 4 implies Theorem 3.

One can easily derive from the rank function of \(R(G)\) that rigid graphs with at least 3 vertices are 2-connected (see Lemma 2.6 in [5]). Thus, Theorem 4 gives the following corollary.

Corollary 1. Let \(k \geq 1\) and \(\ell \geq 0\) be integers. Every \((6k + 2\ell, 2k)\)-connected simple graph contains \(k\) 2-connected and \(\ell\) connected edge-disjoint spanning subgraphs.

Corollary 1 allows us to improve two results of Jordán. The first one deals with the following conjecture of Kriesell, see in [6].

Conjecture 1 (Kriesell). For every positive integer \(\lambda\) there exists a (smallest) \(f(\lambda)\) such that every \(f(\lambda)\)-connected graph \(G\) contains a spanning tree \(T\) for which \(G - E(T)\) is \(\lambda\)-connected.

As Jordán pointed out in [6], Theorem 3 answers this conjecture for \(\lambda = 2\) by showing that \(f(2) \leq 12\). Corollary 1 applied for \(k = 1\) and \(\ell = 1\) directly implies that \(f(2) \leq 8\).

Corollary 2. Every 8-connected graph \(G\) contains a spanning tree \(T\) such that \(G - E(T)\) is 2-connected.

The other improvement deals with the following conjecture of Thomassen [10].

Conjecture 2 (Thomassen [10]). For every positive integer \(\lambda\) there exists a (smallest) \(g(\lambda)\) such that every \(g(\lambda)\)-connected graph \(G\) has a \(\lambda\)-connected orientation.

By applying Theorem 3 and an orientation result of Berg and Jordán [1], Jordán proved in [6] the conjecture for \(\lambda = 2\) by showing that \(g(2) \leq 18\).
Corollary 1 allows us to prove a general result that implies $g(2) \leq 14$. For this purpose, we use a result of Király and Szigeti [8].

Theorem 5 (Király and Szigeti [8]). An Eulerian graph $G = (V, E)$ has an Eulerian orientation D such that $D - v$ is k-arc-connected for all $v \in V$ if and only if $G - v$ is $2k$-edge-connected for all $v \in V$.

Corollary 1 and Theorem 5 imply the following corollary which gives the claimed bound for $k = 1$.

Corollary 3. Every simple $(12k + 2, 2k)$-connected graph G has an orientation D such that $D - v$ is k-arc-connected for all $v \in V$.

Proof. Let $G = (V, E)$ be a simple $(12k + 2, 2k)$-connected graph. By Theorem 5 it suffices to prove that G contains an Eulerian spanning subgraph H such that $H - v$ is $2k$-edge-connected for all $v \in V$. By Corollary 1, G contains $2k$ 2-connected spanning subgraphs $H_i = (V, E_i), i = 1, \ldots, 2k$ and a spanning tree F pairwise edge-disjoint. Define $H' = (V, \bigcup_{i=1}^{2k} E_i)$. For all $i = 1, \ldots, 2k$, since H_i is 2-connected, $H_i - v$ is connected; hence $H' - v$ is $2k$-edge-connected for all $v \in V$. Denote T the set of vertices of odd degree in H'. We say that F' is a T-join if the set of odd degree vertices of $G_{F'}$ coincides with T. It is well-known that the connected graph F contains a T-join. Thus adding the edges of this T-join to H' provides the required spanning subgraph of G.

Finally we mention that the following conjecture of Frank, that would give a necessary and sufficient condition for a graph to have a 2-connected orientation, would imply that $g(2) \leq 4$.

Conjecture 3 (Frank [3]). A graph has a 2-connected orientation if and only if it is $(4, 2)$-connected.

3 Proofs

To prove Theorem 4 we need to introduce two other matroids on the edge set E of G. Denote $\mathcal{C}(G)$ the **circuit matroid** of G on ground-set E with rank function r_C given by (3). Let n be the number of vertices in G, that is $n = |V|$. For $F \subseteq E$, denote $c(G_F)$ the number of connected components of G_F, it is well known that,

$$r_C(F) = n - c(G_F). \tag{3}$$

To have k rigid spanning subgraphs and ℓ spanning trees pairwise edge-disjoint in G, we must find k basis in $R(G)$ and ℓ basis in $C(G)$ pairwise disjoint. To do that we will need the following matroid. For $k \geq 1$ and $\ell \geq 0$, define $\mathcal{M}_{k, \ell}(G)$ as the matroid on ground-set E, obtained by taking the matroid union of k copies of the rigidity matroid $R(G)$ and ℓ copies of the circuit matroid $C(G)$. Let $r_{\mathcal{M}_{k, \ell}}$ be the rank function of $\mathcal{M}_{k, \ell}(G)$. By a theorem of Edmonds [2], for the rank of matroid unions,

$$r_{\mathcal{M}_{k, \ell}}(E) = \min_{F \subseteq E} kr_R(F) + \ell r_C(F) + |E \setminus F|. \tag{4}$$

In [6], Jordán used the matroid $\mathcal{M}_{k, 0}(G)$ to prove Theorem 3 and pointed out that using $\mathcal{M}_{k, \ell}(G)$ one could prove a theorem on packing of rigid spanning
subgraphs and spanning trees. We tried to fulfill this gap by following the proof of [6] but we failed. To achieve this aim we had to find a new proof technique. Let us first demonstrate this technique by giving a transparent proof for Theorems 1 and 2.

Proof of Theorem 1. By (2), there exists a collection \(\mathcal{G} \) of subsets of \(V \) such that \(\{E(X), X \in \mathcal{G}\} \) partitions \(E \) and \(r_{\mathcal{R}}(E) = \sum_{X \in \mathcal{G}} (|X| - 3) \). If \(V \notin \mathcal{G} \) then \(r_{\mathcal{R}}(E) \geq 2|V| - 3 \) hence \(G \) is rigid. So in the following we may assume that \(V \notin \mathcal{G} \).

Let \(\mathcal{H} = \{X \in \mathcal{G} : |X| \geq 3\} \) and \(F = \bigcup_{X \in \mathcal{H}} E(X) \). We define, for \(X \in \mathcal{H} \), the border of \(X \) as \(X_B = X \cap (\bigcup_{Y \in \mathcal{H} \setminus X} Y) \) and the proper part of \(X \) as \(X_I = X \setminus X_B \) and \(\mathcal{H}' = \{X \in \mathcal{H} : X_I \neq \emptyset\} \).

Since every edge of \(F \) is induced by an element of \(\mathcal{H} \), for \(X \in \mathcal{H}' \), by definition of \(X_I \), no edge of \(F \) contributes to \(d_{G - X_B}(X_I) \); and for a vertex \(v \in V - V(\mathcal{H}) \), no edge of \(F \) contributes to \(d_G(v) \). Thus, since for \(X \in \mathcal{H}' \), \(X_I \neq \emptyset \) and \(X_I \cup X_B = X \neq V \), by 6-connectivity of \(G \), we have \(|E \setminus F| \geq \frac{1}{2}(\sum_{X \in \mathcal{H}} d_{G - X_B}(X_I) + \sum_{v \in V - V(\mathcal{H})} d_G(v)) \geq \frac{1}{2}(\sum_{X \in \mathcal{H}} (6 - |X_B|) + \sum_{v \in V - V(\mathcal{H})} |X_B| + 3(V - |V(\mathcal{H})|)) \).

Since for \(X \in \mathcal{H} \setminus \mathcal{H}' \), \(|X_B| = |X| \geq 3 \), we have \(\sum_{X \in \mathcal{H}} (2|X| - 3) = \sum_{X \in \mathcal{H}} 2|X| - 3|\mathcal{H}| + 3|\mathcal{H}'| - 3|\mathcal{H}'| \geq \sum_{X \in \mathcal{H}} 2|X| - 3|\mathcal{H}||X_B| - 3|\mathcal{H}'| \).

Since \(G \) is simple, by Remark 1 every \(X \in \mathcal{G} \) of size 2 induces exactly one edge. Hence, by the above inequalities, we have \(\sum_{X \in \mathcal{G}} (2|X| - 3) = \sum_{X \in \mathcal{H}} (2|X| - 3) + |E \setminus F| \geq \sum_{X \in \mathcal{H}} 2|X| - \sum_{X \in \mathcal{H}} |X_B| + 3(|V| - |V(\mathcal{H})|) = (\sum_{X \in \mathcal{H}} 2|X_I| + \sum_{X \in \mathcal{H}} |X_B| - 2|V(\mathcal{H})|) + (|V| - |V(\mathcal{H})|) + 2|V| \geq 2|V| \).

To see the last inequality, let \(v \in V(\mathcal{H}) \). Then \(v \in V \) and hence \(n - |V(\mathcal{H})| \geq 0 \). If \(v \) belongs to exactly one \(X' \in \mathcal{H} \), then \(v \in X'_I \); so \(v \) contributes 2 in \(\sum_{X \in \mathcal{H}} 2|X_I| \). If \(v \) belongs to at least two \(X', X'' \in \mathcal{H} \), then \(v \in X'_B \) and \(v \in X''_B \); so \(v \) contributes at least 2 in \(\sum_{X \in \mathcal{H}} |X_B| \) and hence \(\sum_{X \in \mathcal{H}} 2|X_I| + \sum_{X \in \mathcal{H}} |X_B| - 2|V(\mathcal{H})| \geq 0 \).

Hence \(2|V| - 3 \geq r_{\mathcal{R}}(E) \geq 2|V| \), a contradiction.

Proof of Theorem 2. Note that in the lower bound on \(|E \setminus F| \), \(d_{G - X_B}(X_I) \geq 6 - |X_B| \) can be replaced by \(d_{G - X_B}(X_I) \geq 6 - 2|X_B| \), and the same proof works. This means that instead of 6-connectivity, we used in fact (6,2)-connectivity.

Proof of Theorem 4. Suppose that there exist integers \(k, \ell \) and a graph \(G = (V, E) \) contradicting the theorem. We use the matroid \(\mathcal{M}_{k, \ell} \) defined above. Choose \(F \) a smallest-size set of edges that minimizes the right hand side of (4).

By (2), we can define \(\mathcal{H} \) a collection of subsets of \(V \) such that \(E(X) \cap F \notin \mathcal{H} \) partitions \(F \) and \(r_{\mathcal{R}}(F) = \sum_{X \in \mathcal{H}} (2|X| - 3) \). Since \(G \) is a counterexample and by (2) and (3),

\[
k(2n - 3) + \ell(n - 1) > r_{\mathcal{M}_{k, \ell}}(E) = k \sum_{X \in \mathcal{H}} (2|X| - 3) + \ell(n - c(G_F)) + |E \setminus F| \quad (5)
\]

By \(k \geq 1 \), \(G \) is connected, thus, by (5), \(V \notin \mathcal{H} \). Recall the notations, for \(X \in \mathcal{H} \), \(X_B = X \cap (\bigcup_{Y \in \mathcal{H} \setminus X} Y) \) and \(X_I = X \setminus X_B \) and the definition \(\mathcal{H}' = \{X \in \mathcal{H} : X_I \neq \emptyset\} \). Denote \(\mathcal{K} \) the set of connected components of \(G_F \) intersecting no
set of H'. By Remark 1, for $X \in H'$, X induces a connected subgraph of G_F, thus a connected component of G_F intersecting $X \in H'$ contains X and is the only connected component of G_F containing X. So by definition of K,

\[|\mathcal{H}'| \geq c(G_F) - |\mathcal{K}|. \tag{6} \]

Let us first show a lower bound on $|E \setminus F|$.

Claim 1. $|E \setminus F| \geq k \left(3|\mathcal{H}'| - \sum_{X \in \mathcal{H}'} |X_B| + 3|\mathcal{K}| \right) + \ell c(G_F)$.

Proof. For $X \in \mathcal{H}$, $X_I \neq \emptyset$ and $X_I \cup X_B = X \neq V$. Thus by $(6k + 2\ell, 2k)$-connectivity of G, for $X \in \mathcal{H}'$ and for $K \in \mathcal{K}$,

\[
\begin{align*}
 d_{G-X_B}(X_I) &\geq (6k + 2\ell) - 2k|X_B|, \tag{7} \\
 d_G(K) &\geq 6k + 2\ell. \tag{8}
\end{align*}
\]

Since every edge of F is induced by an element of H and by definition of X_I, for $X \in \mathcal{H}'$, no edge of F' contributes to $d_{G-X_B}(X_I)$. Each $K \in \mathcal{K}$ is a connected component of the graph G_F, thus no edge of F' contributes to $d_G(K)$. Hence, by (7), (8), (6) and $\ell \geq 0$, we obtain the required lower bound on $|E \setminus F|$,

\[
|E \setminus F| \geq \frac{1}{2} \left(\sum_{X \in \mathcal{H}'} d_{G-X_B}(X_I) + \sum_{K \in \mathcal{K}} d_G(K) \right) \\
\geq \frac{1}{2} \left((6k + 2\ell)|\mathcal{H}'| - 2k \sum_{X \in \mathcal{H}'} |X_B| + (6k + 2\ell)|\mathcal{K}| \right) \\
\geq k \left(3|\mathcal{H}'| - \sum_{X \in \mathcal{H}'} |X_B| + 3|\mathcal{K}| \right) + \ell \left(|\mathcal{H}'| + |\mathcal{K}| \right) \\
\geq k \left(3|\mathcal{H}'| - \sum_{X \in \mathcal{H}'} |X_B| + 3|\mathcal{K}| \right) + \ell c(G_F). \tag{9}
\]

Claim 2. $\sum_{X \in \mathcal{H}' \setminus \mathcal{H}'} |X_B| \geq 3(|\mathcal{H}|-|\mathcal{H}'|)$.

Proof. By definition of \mathcal{H}', $X_B = X$ for all $X \in \mathcal{H} \setminus \mathcal{H}'$. So to prove the claim it suffices to show that every $X \in \mathcal{H}$ satisfies $|X| \geq 3$. Suppose there exists $Y \in \mathcal{H}$ such that $|Y| = 2$. By Remark 1 and since G is simple, Y induces exactly one edge e. Define $F'' = F - e$ and $\mathcal{H}'' = \mathcal{H} - Y$. Note that $\{E(X) \cap F'', X \in \mathcal{H}'\}$ partitions F'', hence by (2) and the choice of \mathcal{H},

\[
\ell r_C(F'') \leq \sum_{X \in \mathcal{H}''} (2|X| - 3) = r_C(F) - (2|Y| - 3) - 3 = r_C(F) - 1. \tag{9}
\]

Note also that $c(G_{F''}) \geq c(G_F)$, thus by (3) and $\ell \geq 0$,

\[
\ell r_C(F'') \leq \ell r_C(F). \tag{10}
\]

Since $|F''| < |F|$, the choice of F implies that F'' doesn’t minimizes the right hand side of (4). Hence by (9), (10), the definition of F'', $|Y| = 2$, and $k \geq 1$,
we have the following contradiction:

\[
0 < \left(kr_R(F'') + \ell r_C(F'') + |E \setminus F''| \right) - \left(kr_R(F) + \ell r_C(F) + |E \setminus F| \right)
\]

\[
= k \left(r_R(F'') - r_R(F) \right) + \ell \left(r_C(F'') - r_C(F) \right) + \left(|E \setminus F''| - |E \setminus F| \right)
\]

\[
\leq -k + 0 + |\{e\}|
\]

\[
\leq 0.
\]

To finish the proof we show the following inequality with a simple counting argument.

Claim 3. \(2|K| + \sum_{X \in \mathcal{H}} 2|X_I| + \sum_{X \in \mathcal{H}} |X_B| \geq 2n.\)

Proof. Let \(v \in V.\) If \(v\) belongs to no \(X \in \mathcal{H},\) then \(\{v\} \in K\) and \(v\) contributes \(2\) in \(2|K|\). If \(v\) belongs to exactly one \(X' \in \mathcal{H},\) then \(v \in X'_I\) and \(v\) contributes \(2\) in \(\sum_{X \in \mathcal{H}} 2|X_I|\). If \(v\) belongs to at least two \(X', X'' \in \mathcal{H},\) then \(v \in X'_I, v \in X''_I\) and \(v\) contributes at least \(2\) in \(\sum_{X \in \mathcal{H}} |X_B|\). The claim follows.

Thus we get, by Claims 1, 2 and 3,

\[
k \sum_{X \in \mathcal{H}} \left((2|X| - 3) + |E \setminus F| + \ell(n - c(G_F)) \right)
\]

\[
\geq k \sum_{X \in \mathcal{H}} 2|X| - 3k|\mathcal{H}| + k \left(3|\mathcal{H}'| - \sum_{X \in \mathcal{H}'} |X_B| + 3|K| \right) + \ell c(G_F) + \ell(n - c(G_F))
\]

\[
\geq k \left(\sum_{X \in \mathcal{H}} 2|X| - 3|\mathcal{H}| + 3|\mathcal{H}'| - \sum_{X \in \mathcal{H}'} |X_B| + 3|K| \right) + \ell n
\]

\[
\geq k \left(\sum_{X \in \mathcal{H}} 2|X| - \sum_{X \in \mathcal{H}} |X_B| + 2|\mathcal{K}| \right) + \ell n
\]

\[
\geq k \left(2|\mathcal{K}| + \sum_{X \in \mathcal{H}} 2|X_I| + \sum_{X \in \mathcal{H}} |X_B| \right) + \ell n
\]

\[
\geq 2kn + \ell n.
\]

By \(k \geq 1\) and \(\ell \geq 0,\) this contradicts (5).

Remark that the proof actually shows that if \(G\) is simple and \((6k + 2\ell, 2k)\)-connected and if \(F \subseteq E\) is such that \(|F| \leq 3k + \ell,\) then \(G' = (V, E \setminus F)\) contains \(k\) rigid spanning subgraphs and \(\ell\) spanning trees pairwise edge disjoint.

References

Les cahiers Leibniz ont pour vocation la diffusion des rapports de recherche, des séminaires ou des projets de publication sur des problèmes liés au mathématiques discrètes.