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Abstract

Gyarfas conjectured that for any tree 1" every T-free graph G with
maximum clique size w(G) is fr(w(G))-colorable, for some function fr
that depends only on 7" and w(G). Moreover, he proved the conjecture
when T is the path Py on k vertices. In the case of Ps, the best values or
bounds known so far are fp,(2) = 3 and fr,(q) < 377'. We prove here
that fp,(3) = 5.

1 Introduction

All graphs considered here are finite and have no loops or multiple edges. The
chromatic number of a graph G is denoted by x(G) and the clique number
by w(G). Given a set F of graphs, a graph G is F-free if G has no induced
subgraph that is isomorphic to a member of . A k-hole in a graph is an induced
cycle of length k, and a k-antihole is an induced subgraph isomorphic to the
complement of a cycle of length k. We let K, and P, respectively denote the
complete graph on n vertices and the path on n vertices. Gydrfas [9] conjectured
that if 7' is any tree (or forest) then there is a function fr such that every T-
free graph G satisfies x(G) < fr(w(G)), and he proved the conjecture when T'
is a path. Gravier, Hoang and Maffray [8] improved Gydrfds’s bound slightly
by proving that every Pj-free graph G satisfies x(G) < (k — 2)“(9)~1. One
may wonder whether this exponential bound can be improved. In particular,
is there a polynomial function f; such that every Py-free graph G satisfies
X(G) < fr(w(G))? A positive answer to this question would also imply that a
famous conjecture due to Erdés and Hajnal [6] holds true for Pg-free graphs.

*CNRS/Grenoble-INP /UJF-Grenoble 1, G-SCOP (UMR5272), Grenoble, France.
TEcole Normale Supérieure, Lyon, France.

fCNRS/Grenoble-INP/UJF-Grenoble 1, G-SCOP (UMR5272), Grenoble, France.
§Projet Mascotte, I3S (CNRS, UNSA) and INRIA, Sophia-Antipolis, France.



This conjecture of Erdés and Hajnal states that for every graph H there exists
a constant 6(H) such that every H-free graph with n vertices contains a clique
or a stable set of size n®). The conjecture is proved only for very few (and
small) instance of H. See [4] for a survey. We propose here a first step in the
exploration of the question above. When k& = 5 and w(G) = 3 (i.e., when G is
{Ps, K4}-free), the results mentioned above give x(G) < 9. Our main result is
the following theorem.

Theorem 1.1. Let G be a {Ps, K4}-free graph. Then x(G) <5.

We observe that there exist {Ps, K4}-free graphs with chromatic number
equal to 5. For example, let H be the graph obtained from the union of two
vertex-disjoint 5-holes A and B by adding three vertices x,y, z such that the
neighborhood of x is V(A) U V(B), the neighborhood of y is V(A) U {z} and
the neighborhood of z is V(B) U {y}. It is easy to check that H is Ps-free and
Ky-free and that x(H) = 5.

In our proof of Theorem 1.1 we will use the following result, which covers
the case when our graph contains no odd hole. In Section 7, we show how a
proof of our Theorem 1.1 can be obtained without using Theorem 1.2.

Theorem 1.2 (Chudnovsky, Robertson, Seymour and Thomas [5]). Every
graph with no odd hole and no K4 is 4-colorable.

Proof of Theorem 1.1. Graph G contains no k-hole with & > 6 (because G
contains no P5) and no f-antihole with ¢ > 8 (because G contains no K,). If G
also contains no 5-hole, then G does not contain any odd hole, and Theorem 1.2
implies that G is 4-colorable. If G contains a 5-hole, the result follows from our
Theorem 6.1 in Section 6. 0

The proof of Theorem 6.1 itself relies on a sequence of partial results. For
this purpose we need to consider four special graphs, which we call the double
diamond, simple diamond, sapphire and ruby. See Figure 1.

. A

Figure 1: Double diamond, simple diamond, sapphire, ruby.
Let G be any {Ps, K4}-free graph. We will prove that:

e If G contains a double diamond, then G is 5-colorable (Theorem 4.2);



e If G contains a simple diamond and no double diamond, then G is 5-
colorable (Theorem 4.4);

e If G contains a sapphire and no simple diamond, then G is 5-colorable
(Theorem 5.2);

e If G contains a ruby, no simple diamond and no sapphire, then G is 5-
colorable (Theorem 5.4);

e If G contains a 5-hole and no simple diamond, no sapphire and no ruby,
then G is 5-colorable (Theorem 6.1).

For standard, undefined terms of Graph Theory, we refer to [1]. Here are
some additional definitions and notation. In a graph G, a vertex x is complete
to a subset S of V(G) if z is adjacent to every vertex in S, and x is anticomplete
to S if x has no neighbor in S. A subset of vertices A is complete to a subset B
if every vertex of A is complete to B, and A is anticomplete to B if every vertex
of A is anticomplete to B. A subset S of vertices is homogeneous if every vertex
of V(G)\ S is either complete or anticomplete to S. A stable set in a graph G
is any subset of pairwise non-adjacent vertices. A graph G contains a graph F'
if F is isomorphic to an induced subgraph of G.

The class of Ps-free graphs is of particular interest in graph theory. It
generalizes many classes, such as split graphs, cographs, 2Ks-free graphs, P,-
sparse graphs, etc. It is the smallest class (by inclusion) defined by only one
connected forbidden induced subgraph for which the complexity status of the
MAXIMUM INDEPENDENT SET problem is still unknown, despite much research;
see e.g. [12]. On the positive side it is known that, that, for fixed k, one can
decide in polynomial time if a Ps-graph is k-colorable [11]. More structural
results on Ps-free graphs can be found in particular in [2] and [3].

2 {Ps, K3}-free graphs

Before considering {Ps, K4}-graphs, it is convenient to know the structure of
{Ps, K3}-free graphs. Let us call 5-ring any graph whose vertex-set can be
partitioned into five non-empty stable sets Ry, ..., Rs such that for each ¢ (with
subscripts modulo 5) R; is complete to R;_; U R; 1 and anticomplete to R;_o U
Rit2. The following result is due to Sumner [13]. We include a proof for the
sake of completeness.

Theorem 2.1 ([13]). Let G be a {Ps, K3}-free graph. Then each component of
G is either bipartite or a 5-ring.

Proof. Suppose that a component D of G is not bipartite; so D contains an
odd cycle. Since G is K3-free and Ps-free, D contains a cycle of length 5, so D
contains a 5-ring R = (Ry,..., Rs), and we may assume that R is the largest



such subgraph of D. For each i € {1,...,5}, pick a vertex r; in R;. Suppose
that D # R. Since D is connected, some vertex = of D\ R has a neighbor u; in
R, say u; € R;. Then z has no neighbor w in Ry U Rs, for otherwise {x,uy,u}
induces a K3. By the same argument (applied to us € R3 and ug € Ry4), and
up to symmetry, we may assume that x has no neighbor in R3. If z has a non-
neighbor v in Ry, then x-ui-ro-r3-v is an induced Ps. So x is complete to Ry,
and by the same argument it is complete to Ry. Thus (R1, Re, R3, R4, R U{x})
is a 5-ring, which contradicts the choice of R. So D = R and D is a 5-ring. [

It follows easily from the preceding theorem that every {Ps, K3}-free graph
is 3-colorable. We will need a stronger statement, as follows.

Corollary 2.2. Let G be a {Ps, K3}-free graph. Let S and T be disjoint stable
sets in G such that every vertex of T has a neighbor in S (T may be empty).
Then G admits a 3-coloring where all vertices of S have color 1 and all vertices
of T have color 2.

Proof. We may assume that G is connected, for otherwise it suffices to consider
each component of G separately.

First suppose that G is bipartite, with bipartition (A, B). Suppose that there are
vertices a,b of T with a € A and b € B. By definition of T, there are vertices
u,v of S with au,bv € E, whence u € B and v € A. Since G is connected,
there is a shortest path P between {a,u} and {b,v}, and it is easy to check
that the subgraph induced by V(P)U{a,b,u,v} contains a Ps, a contradiction.
Therefore we may assume, up to symmetry, that B contains no vertex from T,
soT C A\ S. We assign color 1 to all vertices of S, color 2 to all vertices of
A\ S, and color 3 to all vertices of B\ S. This coloring satisfies the requirement.
Now we may assume, by Theorem 2.1, that G is a 5-ring (Ry, ..., Rs), and, up
to symmetry, that S has a vertex in R;. So S has no vertex in Ry U R5. If S
also has no vertex in R3U Ry, then (because every vertex of T' has a neighbor in
S) we have T C Ro U Rs. Otherwise, up to symmetry, S has a vertex in Rz and
none in R4 and up to symmetry again 7" has no vertex in Ry. It follows that
T C Ry U Ry also in this case. In either case, we assign color 1 to all vertices
of Ry U R3, color 2 to all vertices of Ry U R5, and color 3 to all vertices of Ry.
This coloring satisfies the requirement. g

3 Neighbors of a 5-hole

In a graph G, given a 5-hole with vertex-set C, let us say that a vertex z in
V(G)\ C is of type 0 (on C) if it has no neighbor in C, of type i (for any 4 in
{1,...,5}), if z has exactly ¢ neighbors on C and these neighbors are consecutive,
of type 2t if it has exactly two neighbors on C' and they are not consecutive,
and of type 3y if it has exactly three neighbors and they are not consecutive
(i.e., two of them are adjacent and the third one is not adjacent to the first
two). Clearly, these types cover all possibilities, in other words, every vertex of



V(G)\ C is of type 0, 1, 2, 3, 4, 5, 2t or 3y on C. In a Ps-free graph one can
say a little more, as follows.

Lemma 3.1. Let G be a Ps-free graph that contains a 5-hole C'. Then every
vertex of V(G)\ C is of type 0, 2t, 8, 3y, 4 or 5 on C.

Proof. If a vertex x is of type 1 or 2 on C, then it is easy to see that G[C'U{z}]
contains a Ps (of which z is one endvertex). g

In the next sections, we deal with the case when G has a 5-hole with neigh-
bors of type 3 (i.e., G contains a double diamond or a simple diamond), then
neighbors of type 4 (i.e., G contains a sapphire or a ruby). Then we consider the
case when G has a 5-hole with all remaining types of neighbors. The following
lemma will be used many times.

Lemma 3.2. Let G be a connected {Ps, K4}-free graph. Let D be a connected
induced subgraph of G that contains a Ks, and let Z = {x € V(G) |  has no
neighbor in D}. Then every component of G[Z] is homogeneous, and G[Z] is
3-colorable.

Proof. Suppose that some component W of Z is not homogeneous. So there
exist a vertex x in V(G) \ W and adjacent vertices u and v in W such that
x is adjacent to u and not to v. By the definition of Z,  in not in D and
has a neighbor in D. Vertex z is not complete to D, for otherwise, since D
contains a K3, G would contain a Ky. So, because D is connected, there are
adjacent vertices a and b in D such that x is adjacent to a and not to b. But
then b-a-z-u-v is a Ps. So W is homogeneous. Since G is connected, there is a
vertex z in V(G) \ W that is adjacent to W, and by the preceding point x is
complete to W. It follows that G[W] contains no K3, for otherwise, adding x,
G would contain a K4. By Theorem 2.1, G[W] is 3-colorable. Since this holds
for every component W of Z, we obtain that G[Z] is 3-colorable. (]

4 5-holes with neighbors of type 3

4.1 Double diamonds

A double diamond is a graph with seven vertices rq,..., 75, a,b such that
r1,...,75 induce a 5-hole with edges 7;7;11 (modulo 5), vertex a is adjacent
to r1,79 and r5 and not adjacent to r3 and r4, and vertex b is adjacent to r3, 4
and r5 and not adjacent to r; and 5. Vertices a and b may be adjacent or not.
See Figure 1.

Lemma 4.1. Let G be a connected { Ps, K4 }-free graph. Suppose that G contains
a double diamond, with vertex-set D = {r1,...,r5,a,b} and edges as above. Let:
-R;,={x € V(G) | Np(xz) = Np(r;)} for each i in {2,3,5},

- Ry ={z € V(G) | x is complete to {ra,r5} and anticomplete to {rs,r4}},



- Ry ={x € V(G) | x is complete to {rs,rs} and anticomplete to {ri,r2}},
-Y ={z e V(G) | Np(z) = {rz,r3,r5}},

-F={xeV(G)| Np(z) ={r1,ra,r3,ra} or {ri,ra,r3,r4,75}},
-Z={zxeV(Q)| Np(z)=0}.

ThenV(G) =RIURUR3UR4UR;UYUFUZ.

Moreover, if ab is not an edge, then F' = (), and if ab is an edge, then Y = ().

Proof. Note that r; € R; for each i in {1,...,5}, a € Ry and b € Ry. Now
consider any vertex x of V(G)\ D. Let C = {rq,...,r5}. So C induces a 5-hole.
By Lemma 3.1, x is of type 0, 2t, 3, 3y, 4, or 5 on C. Let us analyze each case.
If z is of type 0 on C, then z is not adjacent to a, for otherwise x-a-ro-r3-r4 is
a Ps, and similarly x is not adjacent to b. So z € Z.

Now suppose that x is of type 2t or 3 on C. So N¢(z) is equal to {r;_1,7j41}
or {rj_1,rj,rj+1} for some j in {1,...,5}. If j € {1,4}, then = is in R;. If
j = 2, then za is an edge, for otherwise a-ri-x-r3-r4 is a Ps, xry is not an edge,
for otherwise {z,71,a,72} induces a Ky, and xb is not an edge, for otherwise
ro-r1-x-b-r4 is a P5. So x € Ry. Likewise, if j = 3, then z € R3. If j =5, then
za is an edge, for otherwise a-ro-r3-r4-z is a Ps, and similarly xb is an edge,
and zrs is not an edge, for otherwise {x,r1,a, 75} induces a K. So x € Rs.
Now suppose that x is of type 3y on C. So N¢(z) is equal to {r;_z,r;, 742} for
some j in {1,...,5}. If j = 1, then either {x,b,73,74} induces a K, (if xb is an
edge) or b-ry4-z-r1-r9 is a Ps (if xb is not an edge), a contradiction; thus j # 1.
Similarly, j # 4. If j = 2, then either {z,b,r4,r5} induces a K, (if b is an
edge) or b-ry4-z-ro-r1 is a Ps (if xb is not an edge), a contradiction; thus j # 2.
Similarly, j # 3. So j = 5. Then za is not an edge, for otherwise ri-a-z-r3-ry is
a Ps, and similarly xb is not an edge. So z € Y. Moreover, ab is not an edge,
for otherwise x-ra-a-b-r4 is a Ps. This shows that when ab is an edge, Y must
be empty.

Finally, suppose that = is of type 4 or 5 on C. If = is not adjacent to r; for
some j in {1,2} (and so x is of type 4), then xb is not an edge, for otherwise
{z,b,r3,r4} induces a Ky4; but then either b-ry-a-ro-r; or b-ry-a-ri-ro is a Ps.
So «x is adjacent to 1 and 79, and similarly it is adjacent to r3 and r4. Then xa
is not an edge, for otherwise {z, a, 71,72} induces a Ky4; and similarly zb is not
an edge. So x € F'. Moreover, ab is an edge, for otherwise a-r1-z-r4-b is a Ps.
This shows that when ab is not an edge, F' must be empty. This completes the
proof of the lemma. O

Theorem 4.2. Let G be a {Ps, K4}-free graph that contains a double diamond.
Then G is 5-colorable.

Proof. Let D = {ry,...,r5,a,b} be the vertex-set of a double diamond in G,
with the same notation as above. Let sets Ry,..., R5,Y, F and Z be defined as
in Lemma 4.1. We observe that:

Each of Ry U R5, R3 U R5 and Y U F' is a stable set. (1)

Suppose that there are adjacent vertices v and v in any of these three sets. If



u,v € RoURs5, then {u, v, a,r} induces a Ky. If u,v € R3URj, then {u,v,b,r4}
induces a K4. If u,v € Y U F, then {u,v,rs,r3} induces a K4. Thus (1) holds.

N(Z) CY, and every component of Z is homogeneous. (2)

The fact that every component of Z is homogeneous follows from Lemma 3.2.
Now suppose that there is an edge zu with z € Z and v € V(G) \ (ZUY).
By Lemma 4.1, we have u € R; U F for some ¢ in {1,...,5}. If u € R;, then
Z-U-Ti+1-Ti+2-Ti+3 is a P5. If u € F, then ab is an edge by Lemma 4.1, and then
a-b-rg-u-z is a Ps. So N(Z) CY. Thus (2) holds.

Now we build a 5-coloring of G.

First suppose that ab is not an edge. By Lemma 4.1, I = (). Every vertex
of Ry UR,UY is adjacent to rj, so the subgraph G[R; U R4 UY] contains no
K3, and so, by Theorem 2.1, it is 3-colorable. We assign colors 1, 2 and 3 to its
vertices. By Corollary 2.2, we can ensure that all vertices of Y receive color 1.
We assign color 4 to the vertices of Rs, and color 5 to the vertices of R3 U Rs.
By (1), this yields a 5-coloring of G \ Z. By Lemma 3.2, G[Z] is 3-colorable.
We assign colors 2, 3 and 4 to the vertices of Z. (Recall that all vertices of YV
have color 1.) Thus we obtain a 5-coloring of G.

Now suppose that ab is an edge. By Lemma 4.1, Y = ). By (2) and since
Y =) and G is connected, we have Z = (). Therefore V(G) = RiyU...UR;UF.
We claim that every vertex z in Ry URy is adjacent to exactly one of @ and b. For
suppose the contrary. Up to symmetry, we can assume z € R;. If x is adjacent
to both a and b, then {x, a,b,r5} induces a K. If z is adjacent to none of a and
b, then z-re-a-b-r4 is a Ps, a contradiction. So the claim holds. For each u in
{a,b}, let R, = {x € Ry UR, | x is adjacent to u}. So Ry URy = R, U Ry. We
observe that R, is a stable set, for if it contained two adjacent vertices = and
y then {z,y,a,r5} would induce a K. Likewise, R} is a stable set. It follows
that R, Ry, Ra, R3 U Rs and F form a 5-coloring of G. O

4.2 Simple diamonds

A simple diamond is a graph with six vertices rq,...,7r5 and s; such that
r1,...,75 induce a 5-hole with edges r;7;4+1 (modulo 5) and the neighbors of
s5 are 11,74 and r5. See Figure 1.

Lemma 4.3. Let G be a connected {Ps, K4}-free graph that contains a simple
diamond, with vertez-set D = {r1,... 75,85} and edges as above. Assume that
G contains no double diamond. Let:

-R,={z € V(G) | Np(xz) = Np(r;)} for each i in {1,2,3,4},

- Ry ={z € V(QG) | x is complete to {r1,7m4} and anticomplete to {ra,r3}},

Y. ={z € V(GQ) | Np(z) = {ri,ri—2,riya}} for each i in {1,4},

-Ys ={zx e V(G) | Np(z) = {ra,r3,75,85}},

-F={xeV(Q)|{ri,re,rs,ra} C Np(z)},



Z={zeV(@) | Np(z) = 0}.
ThenV(G)=R1URQUR;;UR4UR5UY1UY4UY5UFUZ.

Proof. Note that r; € R; for each i in {1,...,5} and s; € Rs. Now consider
any vertex x of V(G) \ D. Let C = {ry,...,r5}. So C induces a 5-hole. By
Lemma 3.1, z is of type 0, 2t, 3, 3y, 4 or 5 on C. Let us analyze each case.

If z is of type 0 on C, then z is not adjacent to ss, for otherwise z-s5-11-r3-13
isa P;. Thus xz € Z.

Now suppose that z is of type 2t or 3 on C. So N¢(z) is equal to {r;_1,7j41}
or {rj_1,rj,rj41} for some j in {1,...,5}. If j = 1, then zs5 is an edge, for
otherwise z-ro-r3-14-s5 is a P5s. Thus « € Ry. Likewise, if j = 4, then x € Rjy.
Now let j = 2. If xs5 is an edge, then xrs is an edge, for otherwise ro-r3-2-55-775
is a Ps; but then DU {z} induces a double diamond. So xzss is not an edge, and
x € Ry. Likewise, if j = 3, then z € R3. If j =5, then = € R5.

Now suppose that z is of type 3y on C. So N¢(z) is equal to {rj_s,7;, 742}
for some j in {1,...,5}. If j = 1, then xss5 is not an edge, for otherwise ro-rs-
x-85-15 is a Ps; so x € Y7. Likewise, if j = 4, then x € Y. If j = 2, then xs5 is
not an edge, for otherwise {x,r4,75, s5} induces a Ky; but then rs-ro-a-rs-ss is
a Ps. So j # 2, and similarly j # 3. If j = 5, then zs5 is an edge, for otherwise
x-r3-T4-S5-r1 is a Ps; and so x € Y;.

Finally, suppose that x is of type 4 or 5 on C. If x is not adjacent to r; for
some j in {1,2} (and so z is of type 4), then s is not an edge, for otherwise
{z, 74,75, 55} induces a Ky; but then either D U {z} induces a double diamond
(when j = 1) or ro-r3-z-s5-r5 is a Ps (when j = 2). So x is adjacent to 71 and
ro, and similarly it is adjacent to r3 and r4. Thus x € F. O

Theorem 4.4. Let G be a {Ps, K4}-free graph that contains a simple diamond.
Then G is 5-colorable.

Proof. By Theorem 4.2, we may assume that G contains no double diamond.
We may also assume that G is connected. Let D = {ry,...,rs5,s5} be the
vertex-set of a simple diamond in G, with the same notation as above. Let sets
Ri,...,R5,Y1,Y,, Y5, F and Z be defined as in Lemma 4.3. We observe that:

Ry, R3, RiTUR4UY5, FUY; and F UY, are stable sets. (3)

Suppose that there are two adjacent vertices u and v in any of these five sets.
If u,v € Ry, then s5 is adjacent to at most one of u and v, for otherwise
{u,v,71, 85} induces a Ky; but then (D\{rz})U{u, v} induces a double diamond,
a contradiction. The proof is similar for Rs. If u,v € Ry U Ry U Y5, then
{u,v,r5,s5} induces a Ky. If u,v € FUY7, then {u,v,rs,r4} induces a Kjy.
The proof is similar for ' UYj,. Thus (3) holds.

Y5 is complete to Y7 U Yy. (4)

Suppose that there are non-adjacent vertices u and v with u € Y5 and v € Y UY}.
Up to symmetry, let v € Y. Then u-ra-ri-v-r4 is a Ps. Thus (4) holds.



N(Z)CY1UY,UY5UF. (5)

Suppose that there is an edge zu with z € Z and u € V(G)\ (ZUY1UY,UY5UF).
By Lemma 4.3, we have u € R; for some i in {1,...,5}. But then z-u-r;y1-r;yo-
ri+3 is a P5. Thus (5) holds.

Figure 2: A 5-coloring of G\ Z when G contains a simple diamond.

Now we build a 5-coloring of G\ Z. Every vertex of RoUR;UY;UY,UF is ad-
jacent to r1, so the induced subgraph G[R2UR;UY1UY,UF] contains no K3, and
so, by Theorem 2.1, it is 3-colorable. Let Y,! = {y € Y, | y has a neighbor in Y;}
and Y =Y\ Yl Let S=FUY;UYY and T = Y. By (3), S and T are
stable sets, and by their definition, every vertex of T" has a neighbor in S. By
Corollary 2.2, we can color the vertices of G[Rs U R5 UY; UY, U F] with three
colors 1, 2 and 3 so that all vertices of S receive color 1 and all vertices of T’
receive color 2. We assign color 4 to the vertices of Ry U Ry UY5, and color 5 to
the vertices of R3. By (3), this yields a 5-coloring of G \ Z (see Figure 2).

Now consider any component X of Z. By Lemma 3.2, X is homogeneous
and G[X] is 3-colorable. By (5), every vertex of N(X) has color 1, 2 or 4. If X
has only one vertex, we give it color 3. Now suppose that X has at least two
vertices, so it contains two adjacent vertices z and z’. We observe that N(X)
cannot contain both a vertex t of color 2 and a vertex y of color 4, for otherwise
we must have t € T (C Yy) and y € Y5 and then, by (4), {z,2/,t,y} induces a
K,. Consequently, X can be colored with colors 3, 5 and one of 2,4. Thus we
obtain a 5-coloring of G. O



5 5-holes with neighbors of type 4

5.1 Sapphires

A sapphire is a graph with seven vertices r1,...,rs5, w1, wy such that r1,...,r5
induce a 5-hole, with edges 7;7;4+1 (modulo 5), the neighborhood of wy is {rs, 3,
r4,75} and the neighborhood of wy is {ry,re, r3,r5}. See Figure 1.

Lemma 5.1. Let G be a {Ps, K4}-free that contains no simple diamond. Sup-
pose that G contains a sapphire, with vertez-set S = {ry,...,rs5, w1, ws} and
edges as above. Let:

- R, ={z € V(G) | Ns(x) = Ns(r;)} for eachi € {1,...,5},

-W; ={z € V(GQ) | Ns(z) = Ng(w;)} for each j € {1,4},

-Ty ={x e V(G) | Ns(x) = {rz,rs}},

-Ty ={z € V(G) [ Ns(x) = {rs,rs}},

-Y ={x € V(G) | Ng(z) = {ra,73,75}}.

Then V(G)=R1U"'UR5UW1UW4UT1 uT,uY.

Proof. Let C = {ry,...,r5}; so C induces a 5-hole. Clearly, every vertex of C
isin Ry U---URs; UW; UWjy. Let us now consider a vertex z in V(G) \ C. By
Lemma 3.1, z is of type 0, 2t, 3, 3y, 4 or 5 on C.

First suppose that z is of type 4 or 5 on C. If {ry,rq,73,74} C N(x), then
has no neighbor w in {wy, w4}, for otherwise {x,w,rs,r3} induces a Ky; but
then w-r4-x-r1-wy is a Ps. Therefore it must be that x is of type 4 with
Ne(x) = C\ {r;} for some j in {1,...,4}. If j = 1, then zw; is not an edge,
for otherwise {z, wy, 72,73} induces a Ky, and zwy is not an edge, for otherwise
w1-T4-T-wy-71 18 & P5. Thus x € W;. Likewise, if j = 4, then x € Wy. If j = 2,
then zw; is not an edge, for otherwise {x, w1, 74,75} induces a Ky, and zwy is
not an edge, for otherwise {x, w4, 71,75} induces a Ky; but then wi-ry-z-r1-wy
is a P5. If j = 3 a similar contradiction occurs.

If z is of type 3, then C'U {z} induces a simple diamond, a contradiction.

Now suppose that z is of type 3y. So N¢(x) = {rj_s,7;,742} for some j
in {1,...,5}. If j = 1, then zw; is not an edge, for otherwise {z,w, 73,74}
induces a K4, and xw, is an edge, for otherwise wi-r4-z-r1-wy is a Ps; but then
{z,71,72,74, w1, wys} induces a simple diamond. If j = 4 a similar contradiction
occurs. If j = 2, then zw; is not an edge, for otherwise {x, w1, r4, 75} induces
a K4, and zw, is not an edge, for otherwise ri-wys-x-r4-wy is a Ps; but then
r1-wy-r3-r4-x is a P5. If j = 3 a similar contradiction occurs. If j = 5, then =
is not adjacent to any vertex w in {wy, w4}, for otherwise {z,w,re,r3} induces
a Ky thusxz €Y.

Now suppose that z is of type 2t. So Ng(z) = {rj—1,7;41} for some j in
{1,...,5}. Let j = 1. If x is adjacent to wy, then it is not adjacent to wy, for
otherwise r1-w4-z-wi-r4 is a Ps; and so x € Ry. If z is not adjacent to wy, then
it is not adjacent to w;, for otherwise ri-wy-r3-wi-x is a Ps; and so x € Tj.
Likewise, if j = 4, then x € R4y UTy. If j = 2, then zw; is an edge, for otherwise
x-r1-T9-w1-T4 is a Ps, and zw, is an edge, for otherwise wy-r1-x-wi-r4 is a Ps.

10



So x € Ry. Likewise, if j = 3, then z € R3. If j = 5, then xzw; is an edge, for
otherwise x-r1-r5-wi-rg is a Ps, and by symmetry zw, is an edge. So x € Rs.

Finally, suppose that = is of type 0. Let Z be the set of vertices that have no
neighbor in C'. Since G is connected, there is an edge zy with z € Z and y ¢ Z.
By the preceding arguments, y satisfies the conclusion of the lemma. In either
case, we observe that there are three vertices s,s’,s” of S such that s-s’-s” is
a P3 and y is adjacent to s and neither to s’ or s” (if y € R;, consider the P
Tip1-Tita-Tiys; if y € W1 UTy, consider rz-w4-r1; the other cases are symmetric).
Then z-y-s-s’-s” is a Ps. This completes the proof of the lemma. O

Theorem 5.2. Let G be a {Ps, K4}-free graph that contains a sapphire. Then
G is 5-colorable.

Proof. By Theorem 4.4, we may assume that G contains no simple diamond.
Let S = {ry,...,75, w1, ws} be the vertex-set of a sapphire in G, with the same
notation as above. Let sets Ry,..., Ry, Wy, Wy, Ty, Ty and Y be defined as in
Lemma 5.1. We know that V(G) =Ry U---UR; UW, UW,UT; UT, UY.

Figure 3: A 5-coloring of a graph that contains a sapphire.

We observe that R is a stable set, because its vertices are all adjacent to r3
and wy (which are adjacent) and G contains no K. Likewise, R3 is a stable set,
and Rj is a stable set, because its vertices are all adjacent to r; and wy. Let
X =W, UW,UY. Then X is a stable set, because its vertices are all adjacent
torg and r3. Let X' = R UR4UT; UTy. Suppose that X’ contains two adjacent
vertices z and y. If x and y are both in Ry UTh, then {x,y,re, 73,74, 75} induces
a simple diamond. The same holds if  and y are both in R4 U T,. So we may
assume that x € Ry UT) and y € Ry UTy. Then zw, is an edge, for otherwise
r-y-r3-wy-r1 is a P5. By symmetry, yw, is an edge. But then ri-w4-z-y-w; is a
Ps. Thus X’ is a stable set. Hence Ry, R3, R5, X and X’ form a 5-coloring of
G (see Figure 3). O
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5.2 Rubies

A ruby is a graph with seven vertices r1,...,rg,w such that r1,...,rs induce
a 6-antihole, with non-edges r;7;+1 (modulo 6), and the neighborhood of w is
{r1,72,74,75}. See Figure 1.

Lemma 5.3. Let G be a connected {Ps, K4}-free graph that contains no simple
diamond. Suppose that G contains a ruby, with vertez-set {ry,...,r¢,w} and
edges as above. Let C = {ry,...,rg}. For each i in {1,...,6}, let:

Ry = {z € V(G) | No(x) = No(ra)},

- Diiy1 ={z € V(G) | No(2) = {ri,riz1}},

-Fiiy1 ={r € V(G) | No(x) = {ri—1,75, "it1, T2} },

-W={z € V(G) | Nc(z) = Ne(w)},

- Z={z € V(Q) | © has no neighbor in C' U {w}},

where all subscripts are modulo 6. Then V(G) = Uy <;<g(RiUD; 41 UF; i41)U
WuZz.

Proof. Let A = {w,r1,re,73,76} and B = {w,r3,74,75,76}. Note that each of
A and B induces a 5-hole. Consider any vertex z in V(G) \ (C U {w}), and let
X = N(x)N{ry,ra, 4,75}

First suppose that |X| = 0. Then z is not adjacent to r3, for otherwise z-r3-rs-
ro-r4 is a Ps, and by symmetry it is not adjacent to rg, and it is not adjacent
to w, for otherwise xz-w-ri-r3-r¢ is a Ps. Thus z € Z.

Now suppose that | X| = 1. Up to symmetry, let X = {ry}. Then x is adjacent to
rg, for otherwise xz-r1-r5-ro-1¢ is a Ps, and x is not adjacent to r3, for otherwise
x-13-15-12-14 is & P5. Thus « € Dg 1. The other (symmetric) cases are similar.

Now suppose that |X| = 2. First let X = {rq,74}. Then z is not adjacent to w,
for otherwise {x,w, r1, 74} induces a Ky, x is adjacent to rs, for otherwise x-r4-
w-r5-r3 is a Ps, and x is adjacent to rg, for otherwise x-ri-w-ro-1¢ is a Ps. But
then AU {z} induces a simple diamond. By symmetry, the same contradiction
occurs if X = {rq,r5}. Now let X = {r1,r5}. Then z is not adjacent to any
vertex u in {rs,w}, for otherwise {x,u,r1,r5} induces a K4, and x is adjacent
to 76, for otherwise x-ri-w-ro-rg is a Ps. Thus « € Rs. Likewise, if X = {rq,r4}
then z € Rg. Now let X = {r1,ro}. If z has any neighbor in {rs,rs, w},
then it must have at least two neighbors in that set, including w, for otherwise
G[BU{z}] contains a Ps. Thus N¢(z) is equal to either {ry,r2} (sox € D;2) or
{ri,r2,r3} (so x € Rs) or {r1,72,76} (80 & € Ry) or {r1,72,73,76} (so x € F 2).
If X = {ry,r5} the conclusion is similar.

Now suppose that |X| = 3. Up to symmetry, let X = {ry,r2,74}. Then z is
not adjacent to any vertex w in {re,w}, for otherwise {x,u,rs,74} induces a
K4, and z is adjacent to rs, for otherwise z-r4-w-rs-r3 is a Ps. Thus Ng(x) =
{r1,72,73,74}, s0 © € Fy 3. The other (symmetric) cases are similar.

Finally suppose that | X| = 4. Then z is not adjacent to any vertex u in {rs,r¢},
for otherwise {x,u,ry,r5} or {z,u, 72,74} induces a Ky. Thus N (z) = {r1,r2,
T4,75}, S0 © € W. O

Theorem 5.4. Let G be a {Ps, K4}-free graph that contains a ruby, Then G is
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5-colorable.

Proof. By Theorem 4.4, we may assume that G contains no simple diamond.
Let R ={r1,...,76,w} be the vertex-set of a ruby in G, with the same notation
as above. By Lemma 5.3, V(G) is the union of the twenty sets Ry,..., Rg,
Dia,....De1, Fi,...,Fs1, W and Z. We call them the basic sets. We note
that:

w is complete to R1 URQUR4UR5UDQ}gUD3y4UD5’6UD571UF172UF4’5. (6)

Suppose that w has a non-neighbor u in that set. Up to symmetry, let u €
R1 U D3’4 U F475. Then U-13-71-W-T9 is a P5. Thus (6) holds.

It is convenient here to rename w as r7. For any two integers ¢ and j in
{1,...,7}, let N;; be the set of vertices that are complete to {r;,r;}. We
observe that if r; and r; are adjacent, then NV;; is a stable set, for if it contained
two adjacent vertices u and v, then {u,v,r;,r;} would induce a Ky in G. Thus
we know that:

Ni3, Nis, N35, Naa, Nag, Nag, N14, Nos, N3g, N1,7, No7, Ny,
N5 7 are stable sets.

(7)

Note that by (6), each of the basic sets, except for D; 5 and Dy 5, is included in
one of the sets in (7). So these eighteen sets are stable sets. In addition:

D, s and D; are stable sets. Moreover, D45 is anticomplete to
each of the nine sets Ry, Ry, R3, Rg, W, D34, D5, F34 and Fy.
Likewise, D; 2 is anticomplete to R3, R4, Rs, Re, W, Dg,1, D23,
F671 and F273.

If D, 5 contains two adjacent vertices ¢ and ¢', then {¢,t',rs,r4, 75,76} induces
a simple diamond. The same holds for D; >. Hence they are stable sets. Now
suppose that there is an edge tz such that ¢ € D45 and x lies in any of the nine
sets in the second sentence of (8). In any of the nine cases, there is a Py r-r/-r"
on the 5-hole induced by {ry, 72,73, 76, w} such that = is adjacent to r and not
to ' or " (if © € Ry U D34, take w-ro-rg; if & € Rz U F5 6, take ry-w-rg; if
x € W, take r1-r3-rg; the other cases are symmetric). Then t-z-r-r'-r" is a Ps.
The proof is similar for D; 5. Thus (8) holds.

D3 4 is complete to Ds g, Dg 1 is complete to Da 3, and D3 4 U D5 g
is anticomplete to Dg 1 U Dy 3. Moreover, one of D34, Dsg, Ds1, (9)
D; 3 is empty.

Pick any vertex d; ;41 in D; ;41 for each 4 in {2,3,5,6}. Then ds 4ds ¢ is an edge,
for otherwise ds 4-r4-r1-15-ds6 is a Ps. So D34 is complete to D5 . Likewise,
Dg,1 is complete to Dy 3. Next, d3 4ds 1 is not an edge, for otherwise ds 4-de,1-
r1-T5-T2 is a P5, and d3,4d2’3 is not an edge, for otherwise d3’4—d273—7‘2—7"5—1"1 is
a Ps. Thus Ds 4 is anticomplete to Dg 1 U Dy 3, and so is Ds g, by symmetry.
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Finally, if all four vertices ds 4,ds.6,ds,1,d2,3 do exist, then ds 4-ds 6-r6-ds,1-d2 3
is a P5. Thus (9) holds.

Dy 3U D34 U Rg and D5 ¢ U Dg 1 U R3 are stable sets. (10)

Suppose on the contrary that there are adjacent vertices u and v in Dy 3U D3 4U
Rg. Since each of the basic sets D 3, D3 4, Rg is a stable set, we may assume
up to symmetry that v € D34 and v € Rg U Dy 3. Then u-v-ro-rs-r1 is a Ps.
The proof is similar for D5 ¢ U Dg 1 U Rs. Thus (10) holds.

(There is a number of other notable facts, for example: F34 U F5 ¢ is anti-
complete to Fs 1 U F» 3; and one of F5 4, F56, Fg1, Fo3 is empty; but we will
not use them.)

We now show that G\ Z is 5-colorable. By (9), we may assume that Ds 5 = 0.
Let FZg = {v € F5¢ | v has a neighbor in D5 }. Let:
-S1=R{URyU D374 U F475,
-Sy=R4UR5U D6,1 U FLQ,
-S3=RegUI34UFy3,
- Sy =W UFs, UFsy,
-S5s =R3U D5,6 U (F576 \ FS*,G) @] D475.
So Si,..., S5 form a partition of V(G)\ (ZU Dy ,2). The five sets Sy, ..., S5 are
depicted in Figure 4, where edges of the complement of G are depicted instead
of edges of G to make the picture more readable. We observe that, by the
definition of the basic sets and by (6), we have S1 C Ny 7, S2 C N1 7, S3 C Noy,
and Sy C Ny 5, so, by (7), S1, S2, S5 and Sy are stable sets. Concerning S5, we
know that Rs U D5 is a stable set by (10), and Rs U F5 ¢ is a stable set as it
is included in Ny 5; and the definition of Fy s and (8) imply that S5 is a stable
set. So S,...,S5 form a 5-coloring of G \ (Z U D1 2).

Now consider any vertex ¢ in D; . Suppose that ¢ has a neighbor « in S3 and
a neighbor y in Sy. By (8), we have x € I3 4 and y € F§g. By the definition of
Fy s, y has a neighbor w in D5 6. Then xy is an edge, for otherwise z-ro-w-ri-y
is a Ps, also zu is an edge, for otherwise x-r3-ri-w-u is a Ps, and tu is an edge,
for otherwise t-r1-rs-r¢-u is a Ps. But then {t,z,y,u} induces a Ky. So t is
anticomplete to S3 or to Sy, and t can receive the corresponding color. Thus
we obtain a 5-coloring of G \ Z.

Now consider Z. By Lemma 3.2, G[Z] is 3-colorable. Moreover:

N(Z)C F12UPFy5. (11)
Consider any edge zt with z € Z and t ¢ Z and suppose that ¢t ¢ F; 2 UFy5. So
tisin R; or D; ;41 for some ¢ in {1,...,6} or in F} ;41 for some j in {2,3,5,6}.

If t € Ry, then z-t-r3-rg-ro is a Ps. If t € D9, then z-t-ri-rs-r¢ is a P5. If
t € Fy3, then z-t-rg-rs-w is a Ps. The other (symmetric) cases are similar.
Thus (11) holds.

Recall that vertices of Fy o U Fy 5 receive colors 1 and 2. By (11), Z may
receive colors 3, 4 and 5. This completes the proof of the theorem. O
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Figure 4: A 5-coloring of G'\ (Z U D1,2) when G contains a ruby. The picture shows
the complement G of G. A line between two sets does not necessarily mean that they
are complete to each other in G. Also some adjacency may be unrepresented. Each
circled set is a clique in G.

6 5-holes

Now we can prove that every {Ps, K4}-free graph that contains a 5-hole is 5-
colorable.

A solitaire is a graph with six vertices c1,...,cs, f such that {c1,...,¢5}
induces a C5 and f is adjacent to at least four vertices in that set. Let us say
that the solitaire is special if f is adjacent to exactly four vertices of {c1,...,¢5}.

Theorem 6.1. Let G be a {Ps, K4}-free that contains a Cs. Then G is 5-
colorable.

Proof. By Theorems 4.4, 5.2 and 5.4 we may assume that G contains no simple
diamond, no sapphire and no ruby. Let C = {¢1,...,c5} be the vertex-set of
a C5 in G, with edges ¢;¢;+1 (modulo 5). Without loss of generality, we may
assume that if G' contains a solitaire, then there exists a vertex f such that
C U {f} itself induces a solitaire, and if G contains a special solitaire, then
C'U{f} induces a special solitaire where f is not adjacent to c5. In either case,
we define sets as follows. For each i € {1,...,5}, let:
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-Ri={z € V(G) | Nc(z) = {ci-1,cit1}};

-Y; ={x € V(GQ) | No(v) = {ci—2,ci,ciya}};

-F={zeV(Q)|{c1,co,c3,¢c4} CN(x)};

-Z={xeV(G)| Nc(z) = 0}.

Clearly, the sets Ry, ..., Rs, Y1, ..., Y5, F and Z are pairwise disjoint. Note
that G contains a solitaire if and only if F' # (). We claim that:

V(G)=RiU---URsUY 1 U---UYs UFUZ. (12)

By Lemma 3.1, every vertex x of V(G) \ C is of type 0, 2t, 3, 3y, 4 or 5 on C.
If x is of type 0, then z € Z. If z is of type 2t, then z € R; for some i. If x
is of type 3, then C'U {z} induces a simple diamond, a contradiction. If z is of
type 3y, then = € Y; for some i. If z is of type 4, with No(z) = C \ {c¢;} for
some j, then C'U {z} induces a special solitaire, so f exists and is not adjacent
to ¢5. If j € {1,2}, then xf is not an edge, for otherwise {z, f, c3, c4} induces a
K4; but then CU{f, z} induces either a ruby (if j = 1) or a sapphire (if j = 2),
a contradiction. So j ¢ {1,2}, and by symmetry j ¢ {3,4}. Thus we have j =5
and x € F'. Finally, if = is of type 5 then # € F'. Thus (12) holds.

Ry, ...,R5, Y, Y3, FUY;, FUY, and F UYj5 are stable sets. (13)

Suppose that there are two adjacent vertices u and v in one of these sets. If
u,v € R; for some ¢ in {1,...,5}, then {u,v,¢;11,¢i12,¢i—2, ¢;—1} induces a
simple diamond. If u,v € Y; for some ¢ in {1,...,5}, then {u,v,c;_2,¢i12}
induces a Ky. If u,v € FUY; with ¢ in {1,4,5}, then {u,v, ¢;—2,¢;+2} induces
a K. Thus (13) holds.

Now let us show that:

The subgraph G \ Z admits a 5-coloring where each of the sets

Y1,...,Ys5 and F receives only one color. (14)

In order to prove (14), we distinguish between three cases.

Case 1: f exists and is not adjacent to cs. Let:

Bs = {z € R3 | z has a neighbor in R; UY5} and S; = R; UY, U (R3 \ B3);
Bs = {x € Ry | x has a neighbor in R4 UY3} and Sy = R4 UY3 U (R2 \ Bs);
S3=FUY5, Sy = ByUY7, and S5 = B3 UY,;. We claim that:

Each of S1,...,S5 is a stable set. Moreover, every vertex of Ry is (15)
anticomplete to Sy or to Ss.
First suppose that, for some h in {1,...,5}, the set S, contains two adjacent

vertices v and v. First let h = 1. By (13) and the definition of Bs, we have
u € Ry and v € Yo. Then fzx is an edge for each z in {u,v}, for otherwise
x-cs-c1-f-c3 is a Ps. But then {f,u,v,ca} induces a Ky. The proof is similar
(by symmetry) for h = 2. If h = 3, then {u,v,ca,c3} induces a K4. Now let
h = 4. By (13) we have u € By and v € Y7, so u has a neighbor s in R4UY3, and
fv is not an edge. Then fs is an edge, for otherwise s-c5-c4-f-co is a Ps, and
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fu is an edge, for otherwise u-v-c4-f-co is a Ps. But then {f,u, s, cs} induces a
Ky. If h =5 the proof is similar. This establishes the first sentence of (15).
Now suppose that some vertex z in Rs has neighbors v and v with v € Sy and
v € Ss. Ifu €Y and v € Yy, then wv is not an edge, for otherwise {u,v,z,c1}
induces a Ky; but then {z,u,v,c1,ca,c3,cs} induces a ruby. Thus we may
assume, up to symmetry, that u € Bs, and so u has a neighbor s in R4 U Y3.
Then fs is an edge, for otherwise s-c5-c4-f-co is a Ps, and fu is not an edge, for
otherwise {f,u, s,c3} induces a K4. Also fx is an edge, for otherwise u-z-c4-f-
co is a Ps, and vs is an edge, for otherwise s-cs-c4-v-co is a Ps. Suppose that
v € Yy (so vep is an edge). Then wv is not an edge, for otherwise {u,v,z,c1}
induces a K4. If s has no neighbor in {c1,z}, then s-cs-c4-z-c; is a Ps. If s
is adjacent to both ¢; and z, then {s,c1,z,v} induces a K. If s is adajcent
to ¢1 and not to z, then {z,u,v,s,c1,cs,cq} induces a ruby. If s is adjacent
to = and not to ¢, then {z,u,v,s,c1, ca,c3} induces a ruby. Now suppose that
v € Bs, so vey is an edge, and v has a neighbor ¢ in R; U Y5. This restores
the symmetry, and so we know that ft and ut are edges and fv is not an edge.
Then uwv is an edge, for otherwise v-c4-c5-c1-u is a Ps, and st is not an edge,
for otherwise {u,v,s,t} induces a K4. Then zs is not an edge, for otherwise
{z,u,v, s} induces a Ky. Similarly, ¢ is not an edge. Then sc; is an edge, for
otherwise x-ci-co-c3-s is a Ps. Similarly, tcy is an edge. But then s-cj-co-t-c4 is
a P;. Thus (15) holds.

Figure 5: A 5-coloring of G\ Z when G contains a special solitaire (case 1). The picture
shows the complement G of G. A line between two sets does not necessarily mean that
they are complete to each other in G. Also some adjacency may be unrepresented.
Each circled set is a clique in G.

By (15), we can obtain a 5-coloring of G \ Z starting from Si,...,Ss and
adding each vertex of R5 to Sy or S (see Figure 5, where the complement of G
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is depicted instead of G).

Case 2: f exists and is adjacent to c5. Hence G contains no special solitaire.
We claim that:

For each ¢ in {1,...,5}, F is complete to R;. Moreover, R; U R; 2

and R; UY;_; UY;,; are stable sets. (16)

First suppose that there are non-adjacent vertices v and r with v € F and
r € R;. Since G contains no special solitaire, v is adjacent to c5. Then
{v, 7, ¢it1, Cit2, Cit3, Citat induces a special solitaire. Now suppose that there
are adjacent vertices u and v in one of the sets mentioned in the second sen-
tence of (16). If u,v € R; U R;ya, then {u,v, f,c;+1} induces a Ky. If u,v €
R; UY;_1 UY;1q, then, by (13) and up to symmetry, we have v € Y;_; and
v € RiUY;y1. If v € R;, then {u,v,ciy1,¢i42,Cit3, Cita} induces a special
solitaire. If v € Y;11, then fov is not an edge, for otherwise {v, f,¢;—2,¢;—1} is a
Ky; but then u-v-¢;_a-f-¢; induces a Ps. Thus (16) holds.

Figure 6: A 5-coloring of G \ Z when G contains a solitaire (case 2). The picture
shows the complement G of G. A line between two sets does not necessarily mean that
they are complete to each other in G. Also some adjacency may be unrepresented.
Each circled set is a clique in G.

Let S = RiUY5UR3, So = R4UY3URy, S3=FUY5, Sy =Y, UY, and
S5 = Rs. It follows from (13) and (16) that Si,S2,S3, S4, S5 form a 5-coloring
of G\ Z (see Figure 6, where the complement of G is depicted instead of G).

Case 3: F = (). Hence G contains no solitaire. For each i in {1,...,5}, let
S; = R; UY;41. If S; contains two adjacent vertices v and v, then, by (13), we
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have u € R; and v € Y;41, and {u, v, ¢j11, Cit2, Cit3, Ci+a} induces a solitaire, a
contradiction. So S; is a stable set. It follows that S, ..., S5 form a 5-coloring
of G\ Z. This completes the proof of (14).

All that remains is to extend the 5-coloring of G \ Z we obtained in each of the
three cases to Z. We have:

N(Z)CY,U--UYsUF. (17)

Suppose that there is an edge 2zt with z € Zandt ¢ ZUY; U---UY; UF. So
we have t € R; for some i in {1,...,5}, and then z-t-¢;11-c;y2-ci13 is a Ps, a
contradiction. Thus (17) holds.

We now extend the 5-coloring of G\ Z to each component X of Z, as follows.

First assume that X has only one vertex x. If x has no neighbor of some
color, then this color can be assigned to x. So suppose that x has a neighbor of
color i for each 7 in {1,...,5}. This implies that we are in Case 1 or 3, because in
Case 2 one color is used only in Rs, and by (17) we know that x has no neighbor
in Rs. Suppose that we are in Case 3. By (17), x has a neighbor y; in Y; for
each ¢. For each ¢, y;y;+1 must be an edge, for otherwise y;-c;+o-ciy1-yitr1-ci—1
is a P5, and y,;y;+2 is not an edge, for otherwise {z, y;, yi+1, yi+2} induces a Kjy.
But then {z,y1,...,ys} induces a solitaire, a contradiction. Now suppose that
we are in Case 1. So x has a neighbor y; in Y; for each ¢ in {1,...,4} (and « has
a neighbor in FUY5). We see that fy, is an edge, for otherwise ya-c5-c1-f-c3 is
a P5. Similarly, fys is an edge. Also fx is an edge, for otherwise c5-ys3-f-co-x
is a Ps, and yoy3 is an edge, for otherwise ys-c4-c3-y3-c1 is a Ps. But then
{f,z,y2,y3} induces a Kjy.

Now assume that |X| > 2.

Every vertex of Y7 U--- U Y5 is either complete or anticomplete to

X. Moreover, X is adjacent to at most one of Y7,..., V5. (18)

Note that we cannot apply Lemma 3.2 directly to obtain the first part of the
claim, since C' does not contain any triangle. If, for any i in {1,...,5}, a vertex y
in Y; is neither complete nor anticomplete to X, then there are adjacent vertices
u and v in X such that y is adjacent to u and not to v, but then v-u-y-¢;-c;41 is
a Ps. Thus the first sentence of (18) holds. Now suppose that X has neighbors
y; and y; with y; € Yy, y; € Y5, 4,5 € {1,...,5} and i # j. Let u,v be two
adjacent vertices in X. By the preceding point, y; and y; are complete to {u, v}.
So y;y; is not an edge, for otherwise {u, v, y;, y;} induces a K4. Up to symmetry,
let j e {i+1,i+2}. If j =i+ 1, then yj-ci—1-¢i-yi-Yir2 is a Ps. If j =i+ 2,
then {u,v,¥;,y;,ci—2, c¢i—1} induces a simple diamond. Thus (18) holds.

By (17) and (18), we have N(X) CY; U F for some ¢ in {1,...,5}. By (14)
and up to relabelling, we may assume that every vertex of Y; U F has color 3
or 5. Let X’ = {& € X | 2 has a neighbor in Y; U F'} and X" = X \ X’. Let
a be a vertex of Y; U F' with the largest number of neighbors in X’. We claim
that a is complete to X’. For suppose that a has a non-neighbor z, in X’. By
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the definition of X’, z, has a neighbor b in Y; U F. By the choice of a, there
is a vertex xp in X’ that is adjacent to a and not to b. By (18), a and b are
in F, and by (13) they are not adjacent. If z, and x;, are not adjacent, then
Zo-b-c1-a-mp is a Py, while if they are adjacent then {z,xp,a,b,c1,c2} induces
a simple diamond. This proves the claim that a is complete to X’. Therefore
G[X'] contains no K3, and by Theorem 2.1 it is 3-colorable. We color G[X]
with colors 1,2 and 4, using color 4 only on those components of G[X'] that are
5-rings.

Finally, consider any component W of X”'. By Lemma 3.2 (applied to CUY;UF
and X"), W is homogeneous. Since G[X] is connected, there is a vertex ¢ in X’
adjacent to W. Since W is homogeneous, ¢ is complete to W, so G[W] contains
no K3, and by Theorem 2.1 it is 3-colorable. We color W with colors 3,4 and
5, using color 3 or 5 if W has only one vertex. If this is not a proper coloring,
then it can only be because color 4 was assigned to two adjacent vertices x
and w with z € X’ and w € X”. By the definition of the coloring x belongs
to a component of G[X'] that is a 5-ring, so x lies on a 5-hole C, in G[X'];
and w is in a component W of X" of size at least 2, so w has a neighbor w'.
If w is adjacent to two consecutive vertices u and v of C,, then, since W is
homogeneous, {u,v,w,w’} induces a K4. In the opposite case, by Lemma 3.1,
w must be of type 2t on C. But then C'U {w,w’} contains a simple diamond, a
contradiction. Thus we have a proper 5-coloring of GG. This completes the proof
of the theorem. O

7 Antiholes

Here is a proof of Theorem 1.1 that does not use Theorem 1.2. Recall that a
graph G is perfect if every induced subgraph G’ of G satisfies x(G’') = w(G").
Graphs with no k-hole and no k-antihole for any k& > 5 are called weakly chordal.
Hayward [10] proved that every weakly chordal graph is perfect. Now let G be
any { Ps, K4 }-free graph. We know that G contains no k-hole with & > 6 and no
l-antihole with ¢ > 8. If G is weakly chordal, then G is 3-colorable by Hayward’s
theorem. If G is not weakly chordal, it must contain either a 5-hole, a 7-antihole
of a 6-antihole, and the result follows from our Theorems 6.1, 7.1 and 7.2.

Theorem 7.1. Let G be a {Ps, K4}-free that contains a 7-antihole. Then G is

5-colorable.

Proof. By Theorem 6.1, we may assume that G contains no 5-hole. Let C =
{c1,...,c7} be the vertex-set of a 7-antihole in G, with non-edges ¢;c;+1 (mod-
ulo 7). For each integer ¢ in {1,...,7},let R; = {x € V(G) | No(z) = Neo(e)}}
and T; = {z € V(G) | N¢(z) = {ci—1,¢i, cit1} . We claim that:

V(G) =R U---UR;UTyU---UTy. (19)
Clearly, ¢; € R; for each i. Now consider any vertex x in V(G) \ C. Let
n = |Ne(z)|. Suppose that n > 5. So there are two integers i,j such that =
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is complete to C' \ {c¢;,¢;}, and we may assume that j € {¢ +1,i+ 2,7+ 3}.
If j =i+ 1ori+ 3, then {z,ci12,Citq,cir6} induces a Ky; if j =i + 2, then
{@, ¢it1,Cita, Cive} induces a Ky. So we must have n < 4.

Suppose that n = 4. Let ¢;, ¢j, ¢x (4,4, k € {1,...,7}) be the three non-neighbors
of  in C. Suppose that i, 7,k are consecutive integers (modulo 7), say k =
j+1=14+2 Then Ng(z) = Nc(cj), so x € R;. Now suppose that 4, j
are consecutive integers but i, j, k are not; so, up to symmetry, j = i + 1 and
ke{j+2j+3} If k=j+2, then z-cji1-¢i-cp-¢j is a Ps. If k = j+ 3,
then {x, ck, Ckt1, Ck+2, Ck+3} induces a 5-hole. Finally, suppose that no two of
1,7,k are consecutive; so, up to symmetry, we have k = j + 2 = i + 4. Then
{I, Ci+1,Ci+3, Ci+5} induces a K4.

Suppose that n = 3. Let ¢;,cj, ¢ be the three neighbors of z in C. If 4,5,k
are consecutive integers, say k = j +1 = ¢ + 2, then « € T;. If 7,5 are
consecutive integers but 4, j, k are not, then, up to symmetry, we have j =i+ 1
and k € {j +2,j + 3}, and then z-cx-cgpio-cp—1-Cr+1 is a Ps. Finally, if no two
of 7, j, k are consecutive, then {x, ¢;, ¢, cx} induces a Ky.

Suppose that n = 2. Let ¢;,¢; be the two neighbors of « in C, with (up to
symmetry) j € {i + 1,4+ 2,4+ 3}. If j =i+ 1, then {z,¢;i—1,¢,¢it1,Cita}
induces a 5-hole. If j € {i+ 2,7+ 3}, then a-¢;-cj1a2-¢j_1-Cj4+1 is a Ps.
Suppose that n = 1. Let ¢; be the neighbor of z in C. Then x-c;-¢;12-¢;—1-Cit1
is a P5.

Suppose that n = 0. So = belongs to the set Z of vertices that have no neighbor
in C. Since G is connected, there is an edge zt with z € Z and ¢ ¢ Z. By the
preceding arguments, we have t € R; UT;;3 for some i. Then z-t-c;49-¢;—1-Ci11
is a Ps. Thus Z is empty and (19) holds.

For each i € {1,...,7}, Ri_3 U R;13UT; and T; U T4, are stable sets. (20)

By the definition of R;_3 U R; 3 U T;, this set is complete to {¢;—1,¢i1+1}; so
if it contains two adjacent vertices x and z’, then {z,2’,¢;_1,¢;11} induces a
K4. Secondly, If there exist adjacent vertices ¢ and ¢’ in T; U T;11, then, by the
preceding sentence, we have t € T; and ¢’ € T; 11 and then ¢-t'-¢;12-¢;_o9-ciy3 is
a P5. Thus (20) holds.

Tt follows from (19) and (20) that the five sets Ry UT3 U Ty, Ry U Ry U T,

R3sUTgUTr7, R4y URs UT; and Rg U Ty are stable sets, and so they form a
5-coloring of G. O

Theorem 7.2. Let G be a {Ps, K4}-free that contains a 6-antihole. Then G is
5-colorable.

Proof. By Theorems 7.1 and 6.1, we may assume that G contains no 5-hole and
no 7-antihole. Let C' = {¢1,...,cs} be the vertex-set of a 6-antihole in G, with
non-edges ¢;¢;+1 (modulo 6). For each integer ¢ in {1,...,6}, let:

- Ry ={z € V(G) | No(x) = Nc(ci)}},

- Fiiv1 = {2 € V(G) | No(x) = {cit2, Cit3, Citas Cits ),

-Z={z € V(G)| Nc(z) = 0}.
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We claim that:
V(G)=RiU---URsUF;2U---UFs1UZ. (21)

Clearly, r; € R; for each i. Now consider any vertex z in V(G) \ C. Let
A ={ci,c3,05}, B ={ca,ca,¢6}, na = |Na(z)| and np = |[Np(z)|. If ny =3,
then A U {z} induces a Ky. So na < 2, and similarly ng < 2. If ngy = 0
and np = 0, then z € Z. Now suppose that n4 = 2. Up to symmetry, let
Na(z) = {c1,c3}. Then xco is an edge, for otherwise {x, ¢y, ¢s, ¢a, c6} induces
either a P5 or a 5-hole; and x has at most one neighbor in {c4, ¢6} since ng < 2.
Then, = is in Rs or Fy5 or F5s. The other (symmetric) cases are similar.
Finally suppose that ny = 1. By symmetry, we may assume that ng < 1 and
Na(x) = ¢1. Then either {z,c1,c3,¢6,c2} or {x,c1,¢5,c2,c6} induces a Ps or a
5-hole. Thus (21) holds.

For each i in {1,...,6}, R; U R;41 U F; ;41 is a stable set. (22)

If this set contains two adjacent vertices u and v, then {u,v,r;42,7;_1} induces
a K. Thus (22) holds.

For each ¢ in {1,...,6}, either F;_;; or F; ;11 is empty. (23)

Up to symmetry, let © = 1 and suppose that there are vertices u and v with
u € Fg1 and v € Fy 5. If wv is an edge, then {u,v,c3,c5} induces a Ky. If it is
not an edge, then {u,v} U (C\ {c1}) induces a 7-antihole. Thus (23) holds.

By (23) and up to symmetry, we may assume that either (a) Fy o U F34 U
F576 = Q) or (b) F172 U F273 U F4,5 U F576 = @

By Lemma 3.1, we know that every component X of Z is homogeneous and
3-colorable. Moreover:

For each component X of Z, there are two integers 4, j in {1,...,6} (24)
such that N(X) g Fi,i+1 U Fj,j+1~

Suppose on the contrary that X has neighbors a,b and ¢ in three sets Fj 11,
Fjj41 and Fy 1, respectively, for three different values 4,7,k in {1,...,6}.
Then we must be in case (a), so i =2, j =4 and k = 6. We note that ab is an
edge, for otherwise a-c4-co-b-c3 is a Ps, and similarly ac and bc are edges. Then
for any vertex x in X, and since X is homogeneous, {z,a,b,c} induces a K.
Thus (24) holds.

Now let us show that G is 5-colorable. In case (a), the three sets Ry U Rz U
Fs3, R4URs; U Fy5 and R U Ry U Fg 1 are stable sets by (23), so they form a
5-coloring of G\ Z. In case (b), the four sets R3 U R4 U F3 4, Rg U Ry U Fg 1,
Ry and Rj are stable sets by (23), so they form a 5-coloring of G\ Z. In either
case, by (24) each component X of Z can be colored with three colors that are
not present in N(X). This completes the proof of the theorem. O
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8 Conclusion

When G is any Ps-free graph, the proof from [8] plus the new fact, established
here, that fp. (3) = 5, implies that x(G) < 5-3“(%)=3, Thus fp, (w) < 3¢¢,

where ¢ = 3 — Bg_g ~ 1.535.
g

Stéphan Thomassé asked the following: is it true that there exists a finite
graph H with no K4 and no Ps, such that any graph with no K4 and no Ps has
a homomorphism to H? Most of the cases in the proof of our result suggest that
this could be true, except the case of the simple diamond, where we do not end
up with a nice homomorphism. This yields the following more general question.
Given a hereditary class C with bounded chromatic number and closed under
disjoint union, what conditions force the existence of a graph H € C, such that
every graph of C has a homomorphism to H?

References

[1] J.A. Bondy, U.S.R. Murty. Graph Theory. Springer, 2008.

[2] D. Bruce, C.T. Hoang, J. Sawada. A certifying algorithm for 3-colorability of
P5-free graphs. (ISAAC 2009) LNCS 5878 (2009) 594-604.

[3] S.A. Choudum, T. Karthick. First-fit coloring of { Ps, K4 —e}-free graphs. Discrete
Applied Mathematics 158 (2010) 620-626.

[4] M. Chudnovsky. The Erdés-Hajnal conjecture: A survey. Available on the au-
thor’s webpage, 2012.

[5] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas. Ky-free graphs with no
odd holes. J. Combin. Theory B 100 (2010) 313-331.

[6] P. Erdds, A. Hajnal. Ramsey-type theorems. Disc. Appl. Math. 25 (1989) 37-52.

[7] L. Esperet, L. Lemoine, F. Maffray, G. Morel. The chromatic number of { Ps, K4}-
free graphs. Research report.

[8] S. Gravier, C.T. Hoang, F. Maffray. Coloring the hypergraph of maximal cliques
of a graph with no long path. Discrete Mathematics 272 (2003) 285—290.

[9] A. Gyérfas. Problems from the world surrounding perfect graphs. Proc. Int. Conf.
on Comb. Analysis and Applications (Pokrzywna, 1985). Zastos. Mat. 19 (1987),
413-441.

[10] R.B. Hayward. Weakly triangulated graphs. J. Combin. Th. B 39 (1985) 200—208.

[11] C.T. Hoang, M. Kamiriski, V. Lozin, J. Sawada, X. Shu. Deciding k-colorability
of Ps-free graphs in polynomial time. Algorithmica 57 (2010) 74-81.

[12] V. Lozin, R. Mosca. Maximum independent sets in subclasses of Ps-free graphs.
Information Processing Letters 109 (2009) 319-324.

[13] D.P. Sumner. Subtrees of a graph and chromatic number. In: The Theory and
Applications of Graphs, edited by G. Chartrand. John Wiley, New York, 1981.

23



Les cahiers Leibniz ont pour vocation la diffusion des rapports de
recherche, des séminaires ou des projets de publication sur des problemes
liés au mathématiques discretes.

Responsables de la publication : Nadia Brauner et Andras Sebd
ISSN : 1298-020X - (©) Laboratoire G-SCOP



