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Abstract

Gyárfás conjectured that for any tree T every T -free graph G with
maximum clique size ω(G) is fT (ω(G))-colorable, for some function fT

that depends only on T and ω(G). Moreover, he proved the conjecture
when T is the path Pk on k vertices. In the case of P5, the best values or
bounds known so far are fP5(2) = 3 and fP5(q) ≤ 3q−1. We prove here
that fP5(3) = 5.

1 Introduction

All graphs considered here are finite and have no loops or multiple edges. The
chromatic number of a graph G is denoted by χ(G) and the clique number
by ω(G). Given a set F of graphs, a graph G is F-free if G has no induced
subgraph that is isomorphic to a member of F . A k-hole in a graph is an induced
cycle of length k, and a k-antihole is an induced subgraph isomorphic to the
complement of a cycle of length k. We let Kn and Pn respectively denote the
complete graph on n vertices and the path on n vertices. Gyárfás [9] conjectured
that if T is any tree (or forest) then there is a function fT such that every T -
free graph G satisfies χ(G) ≤ fT (ω(G)), and he proved the conjecture when T
is a path. Gravier, Hoàng and Maffray [8] improved Gyárfás’s bound slightly
by proving that every Pk-free graph G satisfies χ(G) ≤ (k − 2)ω(G)−1. One
may wonder whether this exponential bound can be improved. In particular,
is there a polynomial function fk such that every Pk-free graph G satisfies
χ(G) ≤ fk(ω(G))? A positive answer to this question would also imply that a
famous conjecture due to Erdős and Hajnal [6] holds true for Pk-free graphs.
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This conjecture of Erdős and Hajnal states that for every graph H there exists
a constant δ(H) such that every H-free graph with n vertices contains a clique
or a stable set of size nδ(H). The conjecture is proved only for very few (and
small) instance of H. See [4] for a survey. We propose here a first step in the
exploration of the question above. When k = 5 and ω(G) = 3 (i.e., when G is
{P5,K4}-free), the results mentioned above give χ(G) ≤ 9. Our main result is
the following theorem.

Theorem 1.1. Let G be a {P5,K4}-free graph. Then χ(G) ≤ 5.

We observe that there exist {P5,K4}-free graphs with chromatic number
equal to 5. For example, let H be the graph obtained from the union of two
vertex-disjoint 5-holes A and B by adding three vertices x, y, z such that the
neighborhood of x is V (A) ∪ V (B), the neighborhood of y is V (A) ∪ {z} and
the neighborhood of z is V (B) ∪ {y}. It is easy to check that H is P5-free and
K4-free and that χ(H) = 5.

In our proof of Theorem 1.1 we will use the following result, which covers
the case when our graph contains no odd hole. In Section 7, we show how a
proof of our Theorem 1.1 can be obtained without using Theorem 1.2.

Theorem 1.2 (Chudnovsky, Robertson, Seymour and Thomas [5]). Every
graph with no odd hole and no K4 is 4-colorable.

Proof of Theorem 1.1. Graph G contains no k-hole with k ≥ 6 (because G
contains no P5) and no `-antihole with ` ≥ 8 (because G contains no K4). If G
also contains no 5-hole, then G does not contain any odd hole, and Theorem 1.2
implies that G is 4-colorable. If G contains a 5-hole, the result follows from our
Theorem 6.1 in Section 6. �

The proof of Theorem 6.1 itself relies on a sequence of partial results. For
this purpose we need to consider four special graphs, which we call the double
diamond, simple diamond, sapphire and ruby. See Figure 1.
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Figure 1: Double diamond, simple diamond, sapphire, ruby.

Let G be any {P5,K4}-free graph. We will prove that:

• If G contains a double diamond, then G is 5-colorable (Theorem 4.2);
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• If G contains a simple diamond and no double diamond, then G is 5-
colorable (Theorem 4.4);

• If G contains a sapphire and no simple diamond, then G is 5-colorable
(Theorem 5.2);

• If G contains a ruby, no simple diamond and no sapphire, then G is 5-
colorable (Theorem 5.4);

• If G contains a 5-hole and no simple diamond, no sapphire and no ruby,
then G is 5-colorable (Theorem 6.1).

For standard, undefined terms of Graph Theory, we refer to [1]. Here are
some additional definitions and notation. In a graph G, a vertex x is complete
to a subset S of V (G) if x is adjacent to every vertex in S, and x is anticomplete
to S if x has no neighbor in S. A subset of vertices A is complete to a subset B
if every vertex of A is complete to B, and A is anticomplete to B if every vertex
of A is anticomplete to B. A subset S of vertices is homogeneous if every vertex
of V (G) \ S is either complete or anticomplete to S. A stable set in a graph G
is any subset of pairwise non-adjacent vertices. A graph G contains a graph F
if F is isomorphic to an induced subgraph of G.

The class of P5-free graphs is of particular interest in graph theory. It
generalizes many classes, such as split graphs, cographs, 2K2-free graphs, P4-
sparse graphs, etc. It is the smallest class (by inclusion) defined by only one
connected forbidden induced subgraph for which the complexity status of the
Maximum Independent Set problem is still unknown, despite much research;
see e.g. [12]. On the positive side it is known that, that, for fixed k, one can
decide in polynomial time if a P5-graph is k-colorable [11]. More structural
results on P5-free graphs can be found in particular in [2] and [3].

2 {P5, K3}-free graphs

Before considering {P5,K4}-graphs, it is convenient to know the structure of
{P5,K3}-free graphs. Let us call 5-ring any graph whose vertex-set can be
partitioned into five non-empty stable sets R1, . . . , R5 such that for each i (with
subscripts modulo 5) Ri is complete to Ri−1∪Ri+1 and anticomplete to Ri−2∪
Ri+2. The following result is due to Sumner [13]. We include a proof for the
sake of completeness.

Theorem 2.1 ([13]). Let G be a {P5,K3}-free graph. Then each component of
G is either bipartite or a 5-ring.

Proof. Suppose that a component D of G is not bipartite; so D contains an
odd cycle. Since G is K3-free and P5-free, D contains a cycle of length 5, so D
contains a 5-ring R = (R1, . . . , R5), and we may assume that R is the largest
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such subgraph of D. For each i ∈ {1, . . . , 5}, pick a vertex ri in Ri. Suppose
that D 6= R. Since D is connected, some vertex x of D \R has a neighbor u1 in
R, say u1 ∈ R1. Then x has no neighbor u in R2 ∪ R5, for otherwise {x, u1, u}
induces a K3. By the same argument (applied to u3 ∈ R3 and u4 ∈ R4), and
up to symmetry, we may assume that x has no neighbor in R3. If x has a non-
neighbor v in R4, then x-u1-r2-r3-v is an induced P5. So x is complete to R4,
and by the same argument it is complete to R1. Thus (R1, R2, R3, R4, R5∪{x})
is a 5-ring, which contradicts the choice of R. So D = R and D is a 5-ring. �

It follows easily from the preceding theorem that every {P5,K3}-free graph
is 3-colorable. We will need a stronger statement, as follows.

Corollary 2.2. Let G be a {P5,K3}-free graph. Let S and T be disjoint stable
sets in G such that every vertex of T has a neighbor in S (T may be empty).
Then G admits a 3-coloring where all vertices of S have color 1 and all vertices
of T have color 2.

Proof. We may assume that G is connected, for otherwise it suffices to consider
each component of G separately.
First suppose thatG is bipartite, with bipartition (A,B). Suppose that there are
vertices a, b of T with a ∈ A and b ∈ B. By definition of T , there are vertices
u, v of S with au, bv ∈ E, whence u ∈ B and v ∈ A. Since G is connected,
there is a shortest path P between {a, u} and {b, v}, and it is easy to check
that the subgraph induced by V (P )∪{a, b, u, v} contains a P5, a contradiction.
Therefore we may assume, up to symmetry, that B contains no vertex from T ,
so T ⊆ A \ S. We assign color 1 to all vertices of S, color 2 to all vertices of
A\S, and color 3 to all vertices of B \S. This coloring satisfies the requirement.
Now we may assume, by Theorem 2.1, that G is a 5-ring (R1, . . . , R5), and, up
to symmetry, that S has a vertex in R1. So S has no vertex in R2 ∪ R5. If S
also has no vertex in R3∪R4, then (because every vertex of T has a neighbor in
S) we have T ⊆ R2 ∪R5. Otherwise, up to symmetry, S has a vertex in R3 and
none in R4 and up to symmetry again T has no vertex in R4. It follows that
T ⊆ R2 ∪ R5 also in this case. In either case, we assign color 1 to all vertices
of R1 ∪ R3, color 2 to all vertices of R2 ∪ R5, and color 3 to all vertices of R4.
This coloring satisfies the requirement. �

3 Neighbors of a 5-hole

In a graph G, given a 5-hole with vertex-set C, let us say that a vertex x in
V (G) \ C is of type 0 (on C) if it has no neighbor in C, of type i (for any i in
{1, . . . , 5}), if x has exactly i neighbors on C and these neighbors are consecutive,
of type 2t if it has exactly two neighbors on C and they are not consecutive,
and of type 3y if it has exactly three neighbors and they are not consecutive
(i.e., two of them are adjacent and the third one is not adjacent to the first
two). Clearly, these types cover all possibilities, in other words, every vertex of
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V (G) \ C is of type 0, 1, 2, 3, 4, 5, 2t or 3y on C. In a P5-free graph one can
say a little more, as follows.

Lemma 3.1. Let G be a P5-free graph that contains a 5-hole C. Then every
vertex of V (G) \ C is of type 0, 2t, 3, 3y, 4 or 5 on C.

Proof. If a vertex x is of type 1 or 2 on C, then it is easy to see that G[C ∪{x}]
contains a P5 (of which x is one endvertex). �

In the next sections, we deal with the case when G has a 5-hole with neigh-
bors of type 3 (i.e., G contains a double diamond or a simple diamond), then
neighbors of type 4 (i.e., G contains a sapphire or a ruby). Then we consider the
case when G has a 5-hole with all remaining types of neighbors. The following
lemma will be used many times.

Lemma 3.2. Let G be a connected {P5,K4}-free graph. Let D be a connected
induced subgraph of G that contains a K3, and let Z = {x ∈ V (G) | x has no
neighbor in D}. Then every component of G[Z] is homogeneous, and G[Z] is
3-colorable.

Proof. Suppose that some component W of Z is not homogeneous. So there
exist a vertex x in V (G) \ W and adjacent vertices u and v in W such that
x is adjacent to u and not to v. By the definition of Z, x in not in D and
has a neighbor in D. Vertex x is not complete to D, for otherwise, since D
contains a K3, G would contain a K4. So, because D is connected, there are
adjacent vertices a and b in D such that x is adjacent to a and not to b. But
then b-a-x-u-v is a P5. So W is homogeneous. Since G is connected, there is a
vertex x in V (G) \W that is adjacent to W , and by the preceding point x is
complete to W . It follows that G[W ] contains no K3, for otherwise, adding x,
G would contain a K4. By Theorem 2.1, G[W ] is 3-colorable. Since this holds
for every component W of Z, we obtain that G[Z] is 3-colorable. �

4 5-holes with neighbors of type 3

4.1 Double diamonds

A double diamond is a graph with seven vertices r1, . . . , r5, a, b such that
r1, . . . , r5 induce a 5-hole with edges riri+1 (modulo 5), vertex a is adjacent
to r1, r2 and r5 and not adjacent to r3 and r4, and vertex b is adjacent to r3, r4
and r5 and not adjacent to r1 and r2. Vertices a and b may be adjacent or not.
See Figure 1.

Lemma 4.1. Let G be a connected {P5,K4}-free graph. Suppose that G contains
a double diamond, with vertex-set D = {r1, . . . , r5, a, b} and edges as above. Let:
- Ri = {x ∈ V (G) | ND(x) = ND(ri)} for each i in {2, 3, 5},
- R1 = {x ∈ V (G) | x is complete to {r2, r5} and anticomplete to {r3, r4}},
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- R4 = {x ∈ V (G) | x is complete to {r3, r5} and anticomplete to {r1, r2}},
- Y = {x ∈ V (G) | ND(x) = {r2, r3, r5}},
- F = {x ∈ V (G) | ND(x) = {r1, r2, r3, r4} or {r1, r2, r3, r4, r5}},
- Z = {x ∈ V (G) | ND(x) = ∅}.
Then V (G) = R1 ∪R2 ∪R3 ∪R4 ∪R5 ∪ Y ∪ F ∪ Z.
Moreover, if ab is not an edge, then F = ∅, and if ab is an edge, then Y = ∅.

Proof. Note that ri ∈ Ri for each i in {1, . . . , 5}, a ∈ R1 and b ∈ R4. Now
consider any vertex x of V (G)\D. Let C = {r1, . . . , r5}. So C induces a 5-hole.
By Lemma 3.1, x is of type 0, 2t, 3, 3y, 4, or 5 on C. Let us analyze each case.
If x is of type 0 on C, then x is not adjacent to a, for otherwise x-a-r2-r3-r4 is
a P5, and similarly x is not adjacent to b. So x ∈ Z.
Now suppose that x is of type 2t or 3 on C. So NC(x) is equal to {rj−1, rj+1}
or {rj−1, rj , rj+1} for some j in {1, . . . , 5}. If j ∈ {1, 4}, then x is in Rj . If
j = 2, then xa is an edge, for otherwise a-r1-x-r3-r4 is a P5, xr2 is not an edge,
for otherwise {x, r1, a, r2} induces a K4, and xb is not an edge, for otherwise
r2-r1-x-b-r4 is a P5. So x ∈ R2. Likewise, if j = 3, then x ∈ R3. If j = 5, then
xa is an edge, for otherwise a-r2-r3-r4-x is a P5, and similarly xb is an edge,
and xr5 is not an edge, for otherwise {x, r1, a, r5} induces a K4. So x ∈ R5.
Now suppose that x is of type 3y on C. So NC(x) is equal to {rj−2, rj , rj+2} for
some j in {1, . . . , 5}. If j = 1, then either {x, b, r3, r4} induces a K4 (if xb is an
edge) or b-r4-x-r1-r2 is a P5 (if xb is not an edge), a contradiction; thus j 6= 1.
Similarly, j 6= 4. If j = 2, then either {x, b, r4, r5} induces a K4 (if xb is an
edge) or b-r4-x-r2-r1 is a P5 (if xb is not an edge), a contradiction; thus j 6= 2.
Similarly, j 6= 3. So j = 5. Then xa is not an edge, for otherwise r1-a-x-r3-r4 is
a P5, and similarly xb is not an edge. So x ∈ Y . Moreover, ab is not an edge,
for otherwise x-r2-a-b-r4 is a P5. This shows that when ab is an edge, Y must
be empty.
Finally, suppose that x is of type 4 or 5 on C. If x is not adjacent to rj for
some j in {1, 2} (and so x is of type 4), then xb is not an edge, for otherwise
{x, b, r3, r4} induces a K4; but then either b-r4-x-r2-r1 or b-r4-x-r1-r2 is a P5.
So x is adjacent to r1 and r2, and similarly it is adjacent to r3 and r4. Then xa
is not an edge, for otherwise {x, a, r1, r2} induces a K4; and similarly xb is not
an edge. So x ∈ F . Moreover, ab is an edge, for otherwise a-r1-x-r4-b is a P5.
This shows that when ab is not an edge, F must be empty. This completes the
proof of the lemma. �

Theorem 4.2. Let G be a {P5,K4}-free graph that contains a double diamond.
Then G is 5-colorable.

Proof. Let D = {r1, . . . , r5, a, b} be the vertex-set of a double diamond in G,
with the same notation as above. Let sets R1, . . . , R5, Y, F and Z be defined as
in Lemma 4.1. We observe that:

Each of R2 ∪R5, R3 ∪R5 and Y ∪ F is a stable set. (1)

Suppose that there are adjacent vertices u and v in any of these three sets. If
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u, v ∈ R2∪R5, then {u, v, a, r1} induces a K4. If u, v ∈ R3∪R5, then {u, v, b, r4}
induces a K4. If u, v ∈ Y ∪ F , then {u, v, r2, r3} induces a K4. Thus (1) holds.

N(Z) ⊆ Y , and every component of Z is homogeneous. (2)

The fact that every component of Z is homogeneous follows from Lemma 3.2.
Now suppose that there is an edge zu with z ∈ Z and u ∈ V (G) \ (Z ∪ Y ).
By Lemma 4.1, we have u ∈ Ri ∪ F for some i in {1, . . . , 5}. If u ∈ Ri, then
z-u-ri+1-ri+2-ri+3 is a P5. If u ∈ F , then ab is an edge by Lemma 4.1, and then
a-b-r4-u-z is a P5. So N(Z) ⊆ Y . Thus (2) holds.

Now we build a 5-coloring of G.

First suppose that ab is not an edge. By Lemma 4.1, F = ∅. Every vertex
of R1 ∪ R4 ∪ Y is adjacent to r5, so the subgraph G[R1 ∪ R4 ∪ Y ] contains no
K3, and so, by Theorem 2.1, it is 3-colorable. We assign colors 1, 2 and 3 to its
vertices. By Corollary 2.2, we can ensure that all vertices of Y receive color 1.
We assign color 4 to the vertices of R2, and color 5 to the vertices of R3 ∪ R5.
By (1), this yields a 5-coloring of G \ Z. By Lemma 3.2, G[Z] is 3-colorable.
We assign colors 2, 3 and 4 to the vertices of Z. (Recall that all vertices of Y
have color 1.) Thus we obtain a 5-coloring of G.

Now suppose that ab is an edge. By Lemma 4.1, Y = ∅. By (2) and since
Y = ∅ and G is connected, we have Z = ∅. Therefore V (G) = R1∪ . . .∪R5∪F .
We claim that every vertex x in R1∪R4 is adjacent to exactly one of a and b. For
suppose the contrary. Up to symmetry, we can assume x ∈ R1. If x is adjacent
to both a and b, then {x, a, b, r5} induces a K4. If x is adjacent to none of a and
b, then x-r2-a-b-r4 is a P5, a contradiction. So the claim holds. For each u in
{a, b}, let Ru = {x ∈ R1 ∪R4 | x is adjacent to u}. So R1 ∪R4 = Ra ∪Rb. We
observe that Ra is a stable set, for if it contained two adjacent vertices x and
y then {x, y, a, r5} would induce a K4. Likewise, Rb is a stable set. It follows
that Ra, Rb, R2, R3 ∪R5 and F form a 5-coloring of G. �

4.2 Simple diamonds

A simple diamond is a graph with six vertices r1, . . . , r5 and s5 such that
r1, . . . , r5 induce a 5-hole with edges riri+1 (modulo 5) and the neighbors of
s5 are r1, r4 and r5. See Figure 1.

Lemma 4.3. Let G be a connected {P5,K4}-free graph that contains a simple
diamond, with vertex-set D = {r1, . . . , r5, s5} and edges as above. Assume that
G contains no double diamond. Let:
- Ri = {x ∈ V (G) | ND(x) = ND(ri)} for each i in {1, 2, 3, 4},
- R5 = {x ∈ V (G) | x is complete to {r1, r4} and anticomplete to {r2, r3}},
- Yi = {x ∈ V (G) | ND(x) = {ri, ri−2, ri+2}} for each i in {1, 4},
- Y5 = {x ∈ V (G) | ND(x) = {r2, r3, r5, s5}},
- F = {x ∈ V (G) | {r1, r2, r3, r4} ⊆ ND(x)},
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- Z = {x ∈ V (G) | ND(x) = ∅}.
Then V (G) = R1 ∪R2 ∪R3 ∪R4 ∪R5 ∪ Y1 ∪ Y4 ∪ Y5 ∪ F ∪ Z.

Proof. Note that ri ∈ Ri for each i in {1, . . . , 5} and s5 ∈ R5. Now consider
any vertex x of V (G) \ D. Let C = {r1, . . . , r5}. So C induces a 5-hole. By
Lemma 3.1, x is of type 0, 2t, 3, 3y, 4 or 5 on C. Let us analyze each case.
If x is of type 0 on C, then x is not adjacent to s5, for otherwise x-s5-r1-r2-r3
is a P5. Thus x ∈ Z.
Now suppose that x is of type 2t or 3 on C. So NC(x) is equal to {rj−1, rj+1}
or {rj−1, rj , rj+1} for some j in {1, . . . , 5}. If j = 1, then xs5 is an edge, for
otherwise x-r2-r3-r4-s5 is a P5. Thus x ∈ R1. Likewise, if j = 4, then x ∈ R4.
Now let j = 2. If xs5 is an edge, then xr2 is an edge, for otherwise r2-r3-x-s5-r5
is a P5; but then D∪{x} induces a double diamond. So xs5 is not an edge, and
x ∈ R2. Likewise, if j = 3, then x ∈ R3. If j = 5, then x ∈ R5.
Now suppose that x is of type 3y on C. So NC(x) is equal to {rj−2, rj , rj+2}
for some j in {1, . . . , 5}. If j = 1, then xs5 is not an edge, for otherwise r2-r3-
x-s5-r5 is a P5; so x ∈ Y1. Likewise, if j = 4, then x ∈ Y4. If j = 2, then xs5 is
not an edge, for otherwise {x, r4, r5, s5} induces a K4; but then r3-r2-x-r5-s5 is
a P5. So j 6= 2, and similarly j 6= 3. If j = 5, then xs5 is an edge, for otherwise
x-r3-r4-s5-r1 is a P5; and so x ∈ Y5.
Finally, suppose that x is of type 4 or 5 on C. If x is not adjacent to rj for
some j in {1, 2} (and so x is of type 4), then xs5 is not an edge, for otherwise
{x, r4, r5, s5} induces a K4; but then either D ∪ {x} induces a double diamond
(when j = 1) or r2-r3-x-s5-r5 is a P5 (when j = 2). So x is adjacent to r1 and
r2, and similarly it is adjacent to r3 and r4. Thus x ∈ F . �

Theorem 4.4. Let G be a {P5,K4}-free graph that contains a simple diamond.
Then G is 5-colorable.

Proof. By Theorem 4.2, we may assume that G contains no double diamond.
We may also assume that G is connected. Let D = {r1, . . . , r5, s5} be the
vertex-set of a simple diamond in G, with the same notation as above. Let sets
R1, . . . , R5, Y1, Y4, Y5, F and Z be defined as in Lemma 4.3. We observe that:

R2, R3, R1 ∪R4 ∪ Y5, F ∪ Y1 and F ∪ Y4 are stable sets. (3)

Suppose that there are two adjacent vertices u and v in any of these five sets.
If u, v ∈ R2, then s5 is adjacent to at most one of u and v, for otherwise
{u, v, r1, s5} induces a K4; but then (D\{r2})∪{u, v} induces a double diamond,
a contradiction. The proof is similar for R3. If u, v ∈ R1 ∪ R4 ∪ Y5, then
{u, v, r5, s5} induces a K4. If u, v ∈ F ∪ Y1, then {u, v, r3, r4} induces a K4.
The proof is similar for F ∪ Y4. Thus (3) holds.

Y5 is complete to Y1 ∪ Y4. (4)

Suppose that there are non-adjacent vertices u and v with u ∈ Y5 and v ∈ Y1∪Y4.
Up to symmetry, let v ∈ Y1. Then u-r2-r1-v-r4 is a P5. Thus (4) holds.

8



N(Z) ⊆ Y1 ∪ Y4 ∪ Y5 ∪ F . (5)

Suppose that there is an edge zu with z ∈ Z and u ∈ V (G)\(Z∪Y1∪Y4∪Y5∪F ).
By Lemma 4.3, we have u ∈ Ri for some i in {1, . . . , 5}. But then z-u-ri+1-ri+2-
ri+3 is a P5. Thus (5) holds.

R5

R1

R2 R3

R4

F

Y5

Y 0
4

Y 1
4

Y1

1, 2, 3

4

1, 2, 3

1

5

4

1

4

2

1

Figure 2: A 5-coloring of G \ Z when G contains a simple diamond.

Now we build a 5-coloring of G\Z. Every vertex of R2∪R5∪Y1∪Y4∪F is ad-
jacent to r1, so the induced subgraph G[R2∪R5∪Y1∪Y4∪F ] contains no K3, and
so, by Theorem 2.1, it is 3-colorable. Let Y 1

4 = {y ∈ Y4 | y has a neighbor in Y1}
and Y 0

4 = Y4 \ Y 1
4 . Let S = F ∪ Y1 ∪ Y 0

4 and T = Y 1
4 . By (3), S and T are

stable sets, and by their definition, every vertex of T has a neighbor in S. By
Corollary 2.2, we can color the vertices of G[R2 ∪R5 ∪ Y1 ∪ Y4 ∪ F ] with three
colors 1, 2 and 3 so that all vertices of S receive color 1 and all vertices of T
receive color 2. We assign color 4 to the vertices of R1 ∪R4 ∪ Y5, and color 5 to
the vertices of R3. By (3), this yields a 5-coloring of G \ Z (see Figure 2).

Now consider any component X of Z. By Lemma 3.2, X is homogeneous
and G[X] is 3-colorable. By (5), every vertex of N(X) has color 1, 2 or 4. If X
has only one vertex, we give it color 3. Now suppose that X has at least two
vertices, so it contains two adjacent vertices x and x′. We observe that N(X)
cannot contain both a vertex t of color 2 and a vertex y of color 4, for otherwise
we must have t ∈ T (⊆ Y4) and y ∈ Y5 and then, by (4), {x, x′, t, y} induces a
K4. Consequently, X can be colored with colors 3, 5 and one of 2, 4. Thus we
obtain a 5-coloring of G. �
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5 5-holes with neighbors of type 4

5.1 Sapphires

A sapphire is a graph with seven vertices r1, . . . , r5, w1, w4 such that r1, . . . , r5
induce a 5-hole, with edges riri+1 (modulo 5), the neighborhood of w1 is {r2, r3,
r4, r5} and the neighborhood of w4 is {r1, r2, r3, r5}. See Figure 1.

Lemma 5.1. Let G be a {P5,K4}-free that contains no simple diamond. Sup-
pose that G contains a sapphire, with vertex-set S = {r1, . . . , r5, w1, w4} and
edges as above. Let:
- Ri = {x ∈ V (G) | NS(x) = NS(ri)} for each i ∈ {1, . . . , 5},
- Wj = {x ∈ V (G) | NS(x) = NS(wj)} for each j ∈ {1, 4},
- T1 = {x ∈ V (G) | NS(x) = {r2, r5}},
- T4 = {x ∈ V (G) | NS(x) = {r3, r5}},
- Y = {x ∈ V (G) | NS(x) = {r2, r3, r5}}.
Then V (G) = R1 ∪ · · · ∪R5 ∪W1 ∪W4 ∪ T1 ∪ T4 ∪ Y .

Proof. Let C = {r1, . . . , r5}; so C induces a 5-hole. Clearly, every vertex of C
is in R1 ∪ · · · ∪R5 ∪W1 ∪W4. Let us now consider a vertex x in V (G) \C. By
Lemma 3.1, x is of type 0, 2t, 3, 3y, 4 or 5 on C.
First suppose that x is of type 4 or 5 on C. If {r1, r2, r3, r4} ⊆ N(x), then x
has no neighbor w in {w1, w4}, for otherwise {x,w, r2, r3} induces a K4; but
then w1-r4-x-r1-w4 is a P5. Therefore it must be that x is of type 4 with
NC(x) = C \ {rj} for some j in {1, . . . , 4}. If j = 1, then xw1 is not an edge,
for otherwise {x,w1, r2, r3} induces a K4, and xw4 is not an edge, for otherwise
w1-r4-x-w4-r1 is a P5. Thus x ∈ W1. Likewise, if j = 4, then x ∈ W4. If j = 2,
then xw1 is not an edge, for otherwise {x,w1, r4, r5} induces a K4, and xw4 is
not an edge, for otherwise {x,w4, r1, r5} induces a K4; but then w1-r4-x-r1-w4

is a P5. If j = 3 a similar contradiction occurs.
If x is of type 3, then C ∪ {x} induces a simple diamond, a contradiction.
Now suppose that x is of type 3y. So NC(x) = {rj−2, rj , rj+2} for some j
in {1, . . . , 5}. If j = 1, then xw1 is not an edge, for otherwise {x,w1, r3, r4}
induces a K4, and xw4 is an edge, for otherwise w1-r4-x-r1-w4 is a P5; but then
{x, r1, r2, r4, w1, w4} induces a simple diamond. If j = 4 a similar contradiction
occurs. If j = 2, then xw1 is not an edge, for otherwise {x,w1, r4, r5} induces
a K4, and xw4 is not an edge, for otherwise r1-w4-x-r4-w1 is a P5; but then
r1-w4-r3-r4-x is a P5. If j = 3 a similar contradiction occurs. If j = 5, then x
is not adjacent to any vertex w in {w1, w4}, for otherwise {x,w, r2, r3} induces
a K4; thus x ∈ Y .
Now suppose that x is of type 2t. So NC(x) = {rj−1, rj+1} for some j in
{1, . . . , 5}. Let j = 1. If x is adjacent to w4, then it is not adjacent to w1, for
otherwise r1-w4-x-w1-r4 is a P5; and so x ∈ R1. If x is not adjacent to w4, then
it is not adjacent to w1, for otherwise r1-w4-r3-w1-x is a P5; and so x ∈ T1.
Likewise, if j = 4, then x ∈ R4∪T4. If j = 2, then xw1 is an edge, for otherwise
x-r1-r2-w1-r4 is a P5, and xw4 is an edge, for otherwise w4-r1-x-w1-r4 is a P5.
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So x ∈ R2. Likewise, if j = 3, then x ∈ R3. If j = 5, then xw1 is an edge, for
otherwise x-r1-r5-w1-r3 is a P5, and by symmetry xw4 is an edge. So x ∈ R5.
Finally, suppose that x is of type 0. Let Z be the set of vertices that have no
neighbor in C. Since G is connected, there is an edge zy with z ∈ Z and y /∈ Z.
By the preceding arguments, y satisfies the conclusion of the lemma. In either
case, we observe that there are three vertices s, s′, s′′ of S such that s-s′-s′′ is
a P3 and y is adjacent to s and neither to s′ or s′′ (if y ∈ Ri, consider the P3

ri+1-ri+2-ri+3; if y ∈W1∪T4, consider r3-w4-r1; the other cases are symmetric).
Then z-y-s-s′-s′′ is a P5. This completes the proof of the lemma. �

Theorem 5.2. Let G be a {P5,K4}-free graph that contains a sapphire. Then
G is 5-colorable.

Proof. By Theorem 4.4, we may assume that G contains no simple diamond.
Let S = {r1, . . . , r5, w1, w4} be the vertex-set of a sapphire in G, with the same
notation as above. Let sets R1, . . . , R5, W1, W4, T1, T4 and Y be defined as in
Lemma 5.1. We know that V (G) = R1 ∪ · · · ∪R5 ∪W1 ∪W4 ∪ T1 ∪ T4 ∪ Y.

R5

R4

R3 R2

R1

W1 W4Y

T1T4

X

X ′

Figure 3: A 5-coloring of a graph that contains a sapphire.

We observe that R2 is a stable set, because its vertices are all adjacent to r3
and w1 (which are adjacent) and G contains no K4. Likewise, R3 is a stable set,
and R5 is a stable set, because its vertices are all adjacent to r1 and w4. Let
X = W1 ∪W4 ∪ Y . Then X is a stable set, because its vertices are all adjacent
to r2 and r3. Let X ′ = R1∪R4∪T1∪T4. Suppose that X ′ contains two adjacent
vertices x and y. If x and y are both in R1∪T1, then {x, y, r2, r3, r4, r5} induces
a simple diamond. The same holds if x and y are both in R4 ∪ T4. So we may
assume that x ∈ R1 ∪ T1 and y ∈ R4 ∪ T4. Then xw4 is an edge, for otherwise
x-y-r3-w4-r1 is a P5. By symmetry, yw1 is an edge. But then r1-w4-x-y-w1 is a
P5. Thus X ′ is a stable set. Hence R2, R3, R5, X and X ′ form a 5-coloring of
G (see Figure 3). �
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5.2 Rubies

A ruby is a graph with seven vertices r1, . . . , r6, w such that r1, . . . , r6 induce
a 6-antihole, with non-edges riri+1 (modulo 6), and the neighborhood of w is
{r1, r2, r4, r5}. See Figure 1.

Lemma 5.3. Let G be a connected {P5,K4}-free graph that contains no simple
diamond. Suppose that G contains a ruby, with vertex-set {r1, . . . , r6, w} and
edges as above. Let C = {r1, . . . , r6}. For each i in {1, . . . , 6}, let:
- Ri = {x ∈ V (G) | NC(x) = NC(ri)},
- Di,i+1 = {x ∈ V (G) | NC(x) = {ri, ri+1}},
- Fi,i+1 = {x ∈ V (G) | NC(x) = {ri−1, ri, ri+1, ri+2}},
- W = {x ∈ V (G) | NC(x) = NC(w)},
- Z = {x ∈ V (G) | x has no neighbor in C ∪ {w}},
where all subscripts are modulo 6. Then V (G) =

⋃
1≤i≤6(Ri ∪Di,i+1 ∪Fi,i+1)∪

W ∪ Z.

Proof. Let A = {w, r1, r2, r3, r6} and B = {w, r3, r4, r5, r6}. Note that each of
A and B induces a 5-hole. Consider any vertex x in V (G) \ (C ∪ {w}), and let
X = N(x) ∩ {r1, r2, r4, r5}.
First suppose that |X| = 0. Then x is not adjacent to r3, for otherwise x-r3-r5-
r2-r4 is a P5, and by symmetry it is not adjacent to r6, and it is not adjacent
to w, for otherwise x-w-r1-r3-r6 is a P5. Thus x ∈ Z.
Now suppose that |X| = 1. Up to symmetry, letX = {r1}. Then x is adjacent to
r6, for otherwise x-r1-r5-r2-r6 is a P5, and x is not adjacent to r3, for otherwise
x-r3-r5-r2-r4 is a P5. Thus x ∈ D6,1. The other (symmetric) cases are similar.
Now suppose that |X| = 2. First let X = {r1, r4}. Then x is not adjacent to w,
for otherwise {x,w, r1, r4} induces a K4, x is adjacent to r3, for otherwise x-r4-
w-r5-r3 is a P5, and x is adjacent to r6, for otherwise x-r1-w-r2-r6 is a P5. But
then A ∪ {x} induces a simple diamond. By symmetry, the same contradiction
occurs if X = {r2, r5}. Now let X = {r1, r5}. Then x is not adjacent to any
vertex u in {r3, w}, for otherwise {x, u, r1, r5} induces a K4, and x is adjacent
to r6, for otherwise x-r1-w-r2-r6 is a P5. Thus x ∈ R3. Likewise, if X = {r2, r4}
then x ∈ R6. Now let X = {r1, r2}. If x has any neighbor in {r3, r6, w},
then it must have at least two neighbors in that set, including w, for otherwise
G[B∪{x}] contains a P5. Thus NC(x) is equal to either {r1, r2} (so x ∈ D1,2) or
{r1, r2, r3} (so x ∈ R5) or {r1, r2, r6} (so x ∈ R4) or {r1, r2, r3, r6} (so x ∈ F1,2).
If X = {r4, r5} the conclusion is similar.
Now suppose that |X| = 3. Up to symmetry, let X = {r1, r2, r4}. Then x is
not adjacent to any vertex u in {r6, w}, for otherwise {x, u, r2, r4} induces a
K4, and x is adjacent to r3, for otherwise x-r4-w-r5-r3 is a P5. Thus NC(x) =
{r1, r2, r3, r4}, so x ∈ F2,3. The other (symmetric) cases are similar.
Finally suppose that |X| = 4. Then x is not adjacent to any vertex u in {r3, r6},
for otherwise {x, u, r1, r5} or {x, u, r2, r4} induces a K4. Thus NC(x) = {r1, r2,
r4, r5}, so x ∈W . �

Theorem 5.4. Let G be a {P5,K4}-free graph that contains a ruby, Then G is
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5-colorable.

Proof. By Theorem 4.4, we may assume that G contains no simple diamond.
Let R = {r1, . . . , r6, w} be the vertex-set of a ruby in G, with the same notation
as above. By Lemma 5.3, V (G) is the union of the twenty sets R1, . . . , R6,
D1,2, . . . , D6,1, F1,2, . . . , F6,1, W and Z. We call them the basic sets. We note
that:

w is complete toR1∪R2∪R4∪R5∪D2,3∪D3,4∪D5,6∪D6,1∪F1,2∪F4,5. (6)

Suppose that w has a non-neighbor u in that set. Up to symmetry, let u ∈
R1 ∪D3,4 ∪ F4,5. Then u-r3-r1-w-r2 is a P5. Thus (6) holds.

It is convenient here to rename w as r7. For any two integers i and j in
{1, . . . , 7}, let Ni,j be the set of vertices that are complete to {ri, rj}. We
observe that if ri and rj are adjacent, then Nij is a stable set, for if it contained
two adjacent vertices u and v, then {u, v, ri, rj} would induce a K4 in G. Thus
we know that:

N1,3, N1,5, N3,5, N2,4, N2,6, N4,6, N1,4, N2,5, N3,6, N1,7, N2,7, N4,7,
N5,7 are stable sets. (7)

Note that by (6), each of the basic sets, except for D1,2 and D4,5, is included in
one of the sets in (7). So these eighteen sets are stable sets. In addition:

D4,5 and D1,2 are stable sets. Moreover, D4,5 is anticomplete to
each of the nine sets R1, R2, R3, R6, W , D3,4, D5,6, F3,4 and F5,6.
Likewise, D1,2 is anticomplete to R3, R4, R5, R6, W , D6,1, D2,3,
F6,1 and F2,3.

(8)

If D4,5 contains two adjacent vertices t and t′, then {t, t′, r3, r4, r5, r6} induces
a simple diamond. The same holds for D1,2. Hence they are stable sets. Now
suppose that there is an edge tx such that t ∈ D4,5 and x lies in any of the nine
sets in the second sentence of (8). In any of the nine cases, there is a P3 r-r′-r′′

on the 5-hole induced by {r1, r2, r3, r6, w} such that x is adjacent to r and not
to r′ or r′′ (if x ∈ R1 ∪ D3,4, take w-r2-r6; if x ∈ R3 ∪ F5,6, take r1-w-r2; if
x ∈W , take r1-r3-r6; the other cases are symmetric). Then t-x-r-r′-r′′ is a P5.
The proof is similar for D1,2. Thus (8) holds.

D3,4 is complete to D5,6, D6,1 is complete to D2,3, and D3,4 ∪D5,6

is anticomplete to D6,1 ∪ D2,3. Moreover, one of D3,4, D5,6, D6,1,
D2,3 is empty.

(9)

Pick any vertex di,i+1 in Di,i+1 for each i in {2, 3, 5, 6}. Then d3,4d5,6 is an edge,
for otherwise d3,4-r4-r1-r5-d5,6 is a P5. So D3,4 is complete to D5,6. Likewise,
D6,1 is complete to D2,3. Next, d3,4d6,1 is not an edge, for otherwise d3,4-d6,1-
r1-r5-r2 is a P5, and d3,4d2,3 is not an edge, for otherwise d3,4-d2,3-r2-r5-r1 is
a P5. Thus D3,4 is anticomplete to D6,1 ∪ D2,3, and so is D5,6, by symmetry.
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Finally, if all four vertices d3,4, d5,6, d6,1, d2,3 do exist, then d3,4-d5,6-r6-d6,1-d2,3

is a P5. Thus (9) holds.

D2,3 ∪D3,4 ∪R6 and D5,6 ∪D6,1 ∪R3 are stable sets. (10)

Suppose on the contrary that there are adjacent vertices u and v in D2,3∪D3,4∪
R6. Since each of the basic sets D2,3, D3,4, R6 is a stable set, we may assume
up to symmetry that u ∈ D3,4 and v ∈ R6 ∪ D2,3. Then u-v-r2-r5-r1 is a P5.
The proof is similar for D5,6 ∪D6,1 ∪R3. Thus (10) holds.

(There is a number of other notable facts, for example: F3,4 ∪ F5,6 is anti-
complete to F6,1 ∪ F2,3; and one of F3,4, F5,6, F6,1, F2,3 is empty; but we will
not use them.)

We now show that G\Z is 5-colorable. By (9), we may assume that D2,3 = ∅.
Let F ∗5,6 = {v ∈ F5,6 | v has a neighbor in D5,6}. Let:
- S1 = R1 ∪R2 ∪D3,4 ∪ F4,5,
- S2 = R4 ∪R5 ∪D6,1 ∪ F1,2,
- S3 = R6 ∪ F3,4 ∪ F2,3,
- S4 = W ∪ F6,1 ∪ F ∗5,6,
- S5 = R3 ∪D5,6 ∪ (F5,6 \ F ∗5,6) ∪D4,5.
So S1, . . . , S5 form a partition of V (G) \ (Z ∪D1,2). The five sets S1, . . . , S5 are
depicted in Figure 4, where edges of the complement of G are depicted instead
of edges of G to make the picture more readable. We observe that, by the
definition of the basic sets and by (6), we have S1 ⊆ N4,7, S2 ⊆ N1,7, S3 ⊆ N2,4,
and S4 ⊆ N1,5, so, by (7), S1, S2, S3 and S4 are stable sets. Concerning S5, we
know that R3 ∪D5,6 is a stable set by (10), and R3 ∪ F5,6 is a stable set as it
is included in N1,5; and the definition of F ∗5,6 and (8) imply that S5 is a stable
set. So S1, . . . , S5 form a 5-coloring of G \ (Z ∪D1,2).

Now consider any vertex t in D1,2. Suppose that t has a neighbor x in S3 and
a neighbor y in S4. By (8), we have x ∈ F3,4 and y ∈ F ∗5,6. By the definition of
F ∗5,6, y has a neighbor u in D5,6. Then xy is an edge, for otherwise x-r2-w-r1-y
is a P5, also xu is an edge, for otherwise x-r3-r1-w-u is a P5, and tu is an edge,
for otherwise t-r1-r3-r6-u is a P5. But then {t, x, y, u} induces a K4. So t is
anticomplete to S3 or to S4, and t can receive the corresponding color. Thus
we obtain a 5-coloring of G \ Z.

Now consider Z. By Lemma 3.2, G[Z] is 3-colorable. Moreover:

N(Z) ⊆ F1,2 ∪ F4,5. (11)

Consider any edge zt with z ∈ Z and t /∈ Z and suppose that t /∈ F1,2∪F4,5. So
t is in Ri or Di,i+1 for some i in {1, . . . , 6} or in Fj,j+1 for some j in {2, 3, 5, 6}.
If t ∈ R1, then z-t-r3-r6-r2 is a P5. If t ∈ D1,2, then z-t-r1-r3-r6 is a P5. If
t ∈ F2,3, then z-t-r3-r5-w is a P5. The other (symmetric) cases are similar.
Thus (11) holds.

Recall that vertices of F1,2 ∪ F4,5 receive colors 1 and 2. By (11), Z may
receive colors 3, 4 and 5. This completes the proof of the theorem. �
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Figure 4: A 5-coloring of G \ (Z ∪D1,2) when G contains a ruby. The picture shows
the complement G of G. A line between two sets does not necessarily mean that they
are complete to each other in G. Also some adjacency may be unrepresented. Each
circled set is a clique in G.

6 5-holes

Now we can prove that every {P5,K4}-free graph that contains a 5-hole is 5-
colorable.

A solitaire is a graph with six vertices c1, . . . , c5, f such that {c1, . . . , c5}
induces a C5 and f is adjacent to at least four vertices in that set. Let us say
that the solitaire is special if f is adjacent to exactly four vertices of {c1, . . . , c5}.
Theorem 6.1. Let G be a {P5,K4}-free that contains a C5. Then G is 5-
colorable.

Proof. By Theorems 4.4, 5.2 and 5.4 we may assume that G contains no simple
diamond, no sapphire and no ruby. Let C = {c1, . . . , c5} be the vertex-set of
a C5 in G, with edges cici+1 (modulo 5). Without loss of generality, we may
assume that if G contains a solitaire, then there exists a vertex f such that
C ∪ {f} itself induces a solitaire, and if G contains a special solitaire, then
C ∪ {f} induces a special solitaire where f is not adjacent to c5. In either case,
we define sets as follows. For each i ∈ {1, . . . , 5}, let:
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- Ri = {x ∈ V (G) | NC(x) = {ci−1, ci+1}};
- Yi = {x ∈ V (G) | NC(x) = {ci−2, ci, ci+2}};
- F = {x ∈ V (G) | {c1, c2, c3, c4} ⊆ N(x)};
- Z = {x ∈ V (G) | NC(x) = ∅}.
Clearly, the sets R1, . . ., R5, Y1, . . ., Y5, F and Z are pairwise disjoint. Note
that G contains a solitaire if and only if F 6= ∅. We claim that:

V (G) = R1 ∪ · · · ∪R5 ∪ Y1 ∪ · · · ∪ Y5 ∪ F ∪ Z. (12)

By Lemma 3.1, every vertex x of V (G) \ C is of type 0, 2t, 3, 3y, 4 or 5 on C.
If x is of type 0, then x ∈ Z. If x is of type 2t, then x ∈ Ri for some i. If x
is of type 3, then C ∪ {x} induces a simple diamond, a contradiction. If x is of
type 3y, then x ∈ Yi for some i. If x is of type 4, with NC(x) = C \ {cj} for
some j, then C ∪ {x} induces a special solitaire, so f exists and is not adjacent
to c5. If j ∈ {1, 2}, then xf is not an edge, for otherwise {x, f, c3, c4} induces a
K4; but then C ∪{f, x} induces either a ruby (if j = 1) or a sapphire (if j = 2),
a contradiction. So j /∈ {1, 2}, and by symmetry j /∈ {3, 4}. Thus we have j = 5
and x ∈ F . Finally, if x is of type 5 then x ∈ F . Thus (12) holds.

R1, . . ., R5, Y2, Y3, F ∪ Y1, F ∪ Y4 and F ∪ Y5 are stable sets. (13)

Suppose that there are two adjacent vertices u and v in one of these sets. If
u, v ∈ Ri for some i in {1, . . . , 5}, then {u, v, ci+1, ci+2, ci−2, ci−1} induces a
simple diamond. If u, v ∈ Yi for some i in {1, . . . , 5}, then {u, v, ci−2, ci+2}
induces a K4. If u, v ∈ F ∪ Yi with i in {1, 4, 5}, then {u, v, ci−2, ci+2} induces
a K4. Thus (13) holds.

Now let us show that:

The subgraph G \ Z admits a 5-coloring where each of the sets
Y1, . . . , Y5 and F receives only one color.

(14)

In order to prove (14), we distinguish between three cases.

Case 1: f exists and is not adjacent to c5. Let:
B3 = {x ∈ R3 | x has a neighbor in R1 ∪ Y2} and S1 = R1 ∪ Y2 ∪ (R3 \B3);
B2 = {x ∈ R2 | x has a neighbor in R4 ∪ Y3} and S2 = R4 ∪ Y3 ∪ (R2 \B2);
S3 = F ∪ Y5, S4 = B2 ∪ Y1, and S5 = B3 ∪ Y4. We claim that:

Each of S1, . . . , S5 is a stable set. Moreover, every vertex of R5 is
anticomplete to S4 or to S5. (15)

First suppose that, for some h in {1, . . . , 5}, the set Sh contains two adjacent
vertices u and v. First let h = 1. By (13) and the definition of B3, we have
u ∈ R1 and v ∈ Y2. Then fx is an edge for each x in {u, v}, for otherwise
x-c5-c1-f -c3 is a P5. But then {f, u, v, c2} induces a K4. The proof is similar
(by symmetry) for h = 2. If h = 3, then {u, v, c2, c3} induces a K4. Now let
h = 4. By (13) we have u ∈ B2 and v ∈ Y1, so u has a neighbor s in R4∪Y3, and
fv is not an edge. Then fs is an edge, for otherwise s-c5-c4-f -c2 is a P5, and
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fu is an edge, for otherwise u-v-c4-f -c2 is a P5. But then {f, u, s, c3} induces a
K4. If h = 5 the proof is similar. This establishes the first sentence of (15).
Now suppose that some vertex x in R5 has neighbors u and v with u ∈ S4 and
v ∈ S5. If u ∈ Y1 and v ∈ Y4, then uv is not an edge, for otherwise {u, v, x, c1}
induces a K4; but then {x, u, v, c1, c2, c3, c4} induces a ruby. Thus we may
assume, up to symmetry, that u ∈ B2, and so u has a neighbor s in R4 ∪ Y3.
Then fs is an edge, for otherwise s-c5-c4-f -c2 is a P5, and fu is not an edge, for
otherwise {f, u, s, c3} induces a K4. Also fx is an edge, for otherwise u-x-c4-f -
c2 is a P5, and vs is an edge, for otherwise s-c5-c4-v-c2 is a P5. Suppose that
v ∈ Y4 (so vc1 is an edge). Then uv is not an edge, for otherwise {u, v, x, c1}
induces a K4. If s has no neighbor in {c1, x}, then s-c3-c4-x-c1 is a P5. If s
is adjacent to both c1 and x, then {s, c1, x, v} induces a K4. If s is adajcent
to c1 and not to x, then {x, u, v, s, c1, c3, c4} induces a ruby. If s is adjacent
to x and not to c1, then {x, u, v, s, c1, c2, c3} induces a ruby. Now suppose that
v ∈ B3, so vc1 is an edge, and v has a neighbor t in R1 ∪ Y2. This restores
the symmetry, and so we know that ft and ut are edges and fv is not an edge.
Then uv is an edge, for otherwise v-c4-c5-c1-u is a P5, and st is not an edge,
for otherwise {u, v, s, t} induces a K4. Then xs is not an edge, for otherwise
{x, u, v, s} induces a K4. Similarly, xt is not an edge. Then sc1 is an edge, for
otherwise x-c1-c2-c3-s is a P5. Similarly, tc4 is an edge. But then s-c1-c2-t-c4 is
a P5. Thus (15) holds.

R5R5

R3 \ B3

B3

R1 R4

R2 \ B2

B2Y4

Y2

Y5

Y3

Y1

F

S3

S1 S2

S5S4

Figure 5: A 5-coloring of G\Z when G contains a special solitaire (case 1). The picture
shows the complement G of G. A line between two sets does not necessarily mean that
they are complete to each other in G. Also some adjacency may be unrepresented.
Each circled set is a clique in G.

By (15), we can obtain a 5-coloring of G \ Z starting from S1, . . . , S5 and
adding each vertex of R5 to S4 or S5 (see Figure 5, where the complement of G
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is depicted instead of G).

Case 2: f exists and is adjacent to c5. Hence G contains no special solitaire.
We claim that:

For each i in {1, . . . , 5}, F is complete to Ri. Moreover, Ri ∪ Ri+2

and Ri ∪ Yi−1 ∪ Yi+1 are stable sets. (16)

First suppose that there are non-adjacent vertices v and r with v ∈ F and
r ∈ Ri. Since G contains no special solitaire, v is adjacent to c5. Then
{v, r, ci+1, ci+2, ci+3, ci+4} induces a special solitaire. Now suppose that there
are adjacent vertices u and v in one of the sets mentioned in the second sen-
tence of (16). If u, v ∈ Ri ∪ Ri+2, then {u, v, f, ci+1} induces a K4. If u, v ∈
Ri ∪ Yi−1 ∪ Yi+1, then, by (13) and up to symmetry, we have u ∈ Yi−1 and
v ∈ Ri ∪ Yi+1. If v ∈ Ri, then {u, v, ci+1, ci+2, ci+3, ci+4} induces a special
solitaire. If v ∈ Yi+1, then fv is not an edge, for otherwise {v, f, ci−2, ci−1} is a
K4; but then u-v-ci−2-f -ci induces a P5. Thus (16) holds.

R5

R3

R1 R4

R2

Y4

Y2

Y5

Y3

Y1

F

S1 S2

S3

S4

S5

Figure 6: A 5-coloring of G \ Z when G contains a solitaire (case 2). The picture
shows the complement G of G. A line between two sets does not necessarily mean that
they are complete to each other in G. Also some adjacency may be unrepresented.
Each circled set is a clique in G.

Let S1 = R1 ∪ Y2 ∪ R3, S2 = R4 ∪ Y3 ∪ R2, S3 = F ∪ Y5, S4 = Y1 ∪ Y4 and
S5 = R5. It follows from (13) and (16) that S1, S2, S3, S4, S5 form a 5-coloring
of G \ Z (see Figure 6, where the complement of G is depicted instead of G).

Case 3: F = ∅. Hence G contains no solitaire. For each i in {1, . . . , 5}, let
Si = Ri ∪ Yi+1. If Si contains two adjacent vertices u and v, then, by (13), we
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have u ∈ Ri and v ∈ Yi+1, and {u, v, ci+1, ci+2, ci+3, ci+4} induces a solitaire, a
contradiction. So Si is a stable set. It follows that S1, . . ., S5 form a 5-coloring
of G \ Z. This completes the proof of (14).

All that remains is to extend the 5-coloring of G \Z we obtained in each of the
three cases to Z. We have:

N(Z) ⊆ Y1 ∪ · · · ∪ Y5 ∪ F. (17)

Suppose that there is an edge zt with z ∈ Z and t /∈ Z ∪ Y1 ∪ · · · ∪ Y5 ∪ F . So
we have t ∈ Ri for some i in {1, . . . , 5}, and then z-t-ci+1-ci+2-ci+3 is a P5, a
contradiction. Thus (17) holds.

We now extend the 5-coloring of G\Z to each component X of Z, as follows.

First assume that X has only one vertex x. If x has no neighbor of some
color, then this color can be assigned to x. So suppose that x has a neighbor of
color i for each i in {1, . . . , 5}. This implies that we are in Case 1 or 3, because in
Case 2 one color is used only in R5, and by (17) we know that x has no neighbor
in R5. Suppose that we are in Case 3. By (17), x has a neighbor yi in Yi for
each i. For each i, yiyi+1 must be an edge, for otherwise yi-ci+2-ci+1-yi+1-ci−1

is a P5, and yiyi+2 is not an edge, for otherwise {x, yi, yi+1, yi+2} induces a K4.
But then {x, y1, . . . , y5} induces a solitaire, a contradiction. Now suppose that
we are in Case 1. So x has a neighbor yi in Yi for each i in {1, . . . , 4} (and x has
a neighbor in F ∪Y5). We see that fy2 is an edge, for otherwise y2-c5-c1-f -c3 is
a P5. Similarly, fy3 is an edge. Also fx is an edge, for otherwise c5-y3-f -c2-x
is a P5, and y2y3 is an edge, for otherwise y2-c4-c3-y3-c1 is a P5. But then
{f, x, y2, y3} induces a K4.

Now assume that |X| ≥ 2.

Every vertex of Y1 ∪ · · · ∪ Y5 is either complete or anticomplete to
X. Moreover, X is adjacent to at most one of Y1, . . . , Y5. (18)

Note that we cannot apply Lemma 3.2 directly to obtain the first part of the
claim, since C does not contain any triangle. If, for any i in {1, . . . , 5}, a vertex y
in Yi is neither complete nor anticomplete to X, then there are adjacent vertices
u and v in X such that y is adjacent to u and not to v, but then v-u-y-ci-ci+1 is
a P5. Thus the first sentence of (18) holds. Now suppose that X has neighbors
yi and yj with yi ∈ Yi, yj ∈ Yj , i, j ∈ {1, . . . , 5} and i 6= j. Let u, v be two
adjacent vertices in X. By the preceding point, yi and yj are complete to {u, v}.
So yiyj is not an edge, for otherwise {u, v, yi, yj} induces a K4. Up to symmetry,
let j ∈ {i + 1, i + 2}. If j = i + 1, then yj-ci−1-ci-yi-yi+2 is a P5. If j = i + 2,
then {u, v, yi, yj , ci−2, ci−1} induces a simple diamond. Thus (18) holds.

By (17) and (18), we have N(X) ⊆ Yi ∪ F for some i in {1, . . . , 5}. By (14)
and up to relabelling, we may assume that every vertex of Yi ∪ F has color 3
or 5. Let X ′ = {x ∈ X | x has a neighbor in Yi ∪ F} and X ′′ = X \ X ′. Let
a be a vertex of Yi ∪ F with the largest number of neighbors in X ′. We claim
that a is complete to X ′. For suppose that a has a non-neighbor xa in X ′. By
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the definition of X ′, xa has a neighbor b in Yi ∪ F . By the choice of a, there
is a vertex xb in X ′ that is adjacent to a and not to b. By (18), a and b are
in F , and by (13) they are not adjacent. If xa and xb are not adjacent, then
xa-b-c1-a-xb is a P5, while if they are adjacent then {xa, xb, a, b, c1, c2} induces
a simple diamond. This proves the claim that a is complete to X ′. Therefore
G[X ′] contains no K3, and by Theorem 2.1 it is 3-colorable. We color G[X ′]
with colors 1, 2 and 4, using color 4 only on those components of G[X ′] that are
5-rings.
Finally, consider any component W of X ′′. By Lemma 3.2 (applied to C∪Yi∪F
and X ′′), W is homogeneous. Since G[X] is connected, there is a vertex t in X ′

adjacent to W . Since W is homogeneous, t is complete to W , so G[W ] contains
no K3, and by Theorem 2.1 it is 3-colorable. We color W with colors 3, 4 and
5, using color 3 or 5 if W has only one vertex. If this is not a proper coloring,
then it can only be because color 4 was assigned to two adjacent vertices x
and w with x ∈ X ′ and w ∈ X ′′. By the definition of the coloring x belongs
to a component of G[X ′] that is a 5-ring, so x lies on a 5-hole Cx in G[X ′];
and w is in a component W of X ′′ of size at least 2, so w has a neighbor w′.
If w is adjacent to two consecutive vertices u and v of Cx, then, since W is
homogeneous, {u, v, w,w′} induces a K4. In the opposite case, by Lemma 3.1,
w must be of type 2t on C. But then C ∪ {w,w′} contains a simple diamond, a
contradiction. Thus we have a proper 5-coloring of G. This completes the proof
of the theorem. �

7 Antiholes

Here is a proof of Theorem 1.1 that does not use Theorem 1.2. Recall that a
graph G is perfect if every induced subgraph G′ of G satisfies χ(G′) = ω(G′).
Graphs with no k-hole and no k-antihole for any k ≥ 5 are called weakly chordal.
Hayward [10] proved that every weakly chordal graph is perfect. Now let G be
any {P5,K4}-free graph. We know that G contains no k-hole with k ≥ 6 and no
`-antihole with ` ≥ 8. If G is weakly chordal, then G is 3-colorable by Hayward’s
theorem. If G is not weakly chordal, it must contain either a 5-hole, a 7-antihole
of a 6-antihole, and the result follows from our Theorems 6.1, 7.1 and 7.2.

Theorem 7.1. Let G be a {P5,K4}-free that contains a 7-antihole. Then G is
5-colorable.

Proof. By Theorem 6.1, we may assume that G contains no 5-hole. Let C =
{c1, . . . , c7} be the vertex-set of a 7-antihole in G, with non-edges cici+1 (mod-
ulo 7). For each integer i in {1, . . . , 7}, let Ri = {x ∈ V (G) | NC(x) = NC(ci)}}
and Ti = {x ∈ V (G) | NC(x) = {ci−1, ci, ci+1}}. We claim that:

V (G) = R1 ∪ · · · ∪R7 ∪ T1 ∪ · · · ∪ T7. (19)

Clearly, ci ∈ Ri for each i. Now consider any vertex x in V (G) \ C. Let
n = |NC(x)|. Suppose that n ≥ 5. So there are two integers i, j such that x
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is complete to C \ {ci, cj}, and we may assume that j ∈ {i + 1, i + 2, i + 3}.
If j = i + 1 or i + 3, then {x, ci+2, ci+4, ci+6} induces a K4; if j = i + 2, then
{x, ci+1, ci+4, ci+6} induces a K4. So we must have n ≤ 4.
Suppose that n = 4. Let ci, cj , ck (i, j, k ∈ {1, . . . , 7}) be the three non-neighbors
of x in C. Suppose that i, j, k are consecutive integers (modulo 7), say k =
j + 1 = i + 2. Then NC(x) = NC(cj), so x ∈ Rj . Now suppose that i, j
are consecutive integers but i, j, k are not; so, up to symmetry, j = i + 1 and
k ∈ {j + 2, j + 3}. If k = j + 2, then x-cj+1-ci-ck-cj is a P5. If k = j + 3,
then {x, ck, ck+1, ck+2, ck+3} induces a 5-hole. Finally, suppose that no two of
i, j, k are consecutive; so, up to symmetry, we have k = j + 2 = i + 4. Then
{x, ci+1, ci+3, ci+5} induces a K4.
Suppose that n = 3. Let ci, cj , ck be the three neighbors of x in C. If i, j, k
are consecutive integers, say k = j + 1 = i + 2, then x ∈ Tj . If i, j are
consecutive integers but i, j, k are not, then, up to symmetry, we have j = i+ 1
and k ∈ {j + 2, j + 3}, and then x-ck-ck+2-ck−1-ck+1 is a P5. Finally, if no two
of i, j, k are consecutive, then {x, ci, cj , ck} induces a K4.
Suppose that n = 2. Let ci, cj be the two neighbors of x in C, with (up to
symmetry) j ∈ {i + 1, i + 2, i + 3}. If j = i + 1, then {x, ci−1, ci, ci+1, ci+2}
induces a 5-hole. If j ∈ {i+ 2, i+ 3}, then x-cj-cj+2-cj−1-cj+1 is a P5.
Suppose that n = 1. Let ci be the neighbor of x in C. Then x-ci-ci+2-ci−1-ci+1

is a P5.
Suppose that n = 0. So x belongs to the set Z of vertices that have no neighbor
in C. Since G is connected, there is an edge zt with z ∈ Z and t /∈ Z. By the
preceding arguments, we have t ∈ Ri ∪ Ti+3 for some i. Then z-t-ci+2-ci−1-ci+1

is a P5. Thus Z is empty and (19) holds.

For each i ∈ {1, . . . , 7}, Ri−3 ∪Ri+3 ∪ Ti and Ti ∪ Ti+1 are stable sets. (20)

By the definition of Ri−3 ∪ Ri+3 ∪ Ti, this set is complete to {ci−1, ci+1}; so
if it contains two adjacent vertices x and x′, then {x, x′, ci−1, ci+1} induces a
K4. Secondly, If there exist adjacent vertices t and t′ in Ti ∪ Ti+1, then, by the
preceding sentence, we have t ∈ Ti and t′ ∈ Ti+1 and then t-t′-ci+2-ci−2-ci+3 is
a P5. Thus (20) holds.

It follows from (19) and (20) that the five sets R7 ∪ T3 ∪ T4, R1 ∪ R2 ∪ T5,
R3 ∪ T6 ∪ T7, R4 ∪ R5 ∪ T1 and R6 ∪ T2 are stable sets, and so they form a
5-coloring of G. �

Theorem 7.2. Let G be a {P5,K4}-free that contains a 6-antihole. Then G is
5-colorable.

Proof. By Theorems 7.1 and 6.1, we may assume that G contains no 5-hole and
no 7-antihole. Let C = {c1, . . . , c6} be the vertex-set of a 6-antihole in G, with
non-edges cici+1 (modulo 6). For each integer i in {1, . . . , 6}, let:
- Ri = {x ∈ V (G) | NC(x) = NC(ci)}},
- Fi,i+1 = {x ∈ V (G) | NC(x) = {ci+2, ci+3, ci+4, ci+5}},
- Z = {x ∈ V (G) | NC(x) = ∅}.
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We claim that:

V (G) = R1 ∪ · · · ∪R6 ∪ F1,2 ∪ · · · ∪ F6,1 ∪ Z. (21)

Clearly, ri ∈ Ri for each i. Now consider any vertex x in V (G) \ C. Let
A = {c1, c3, c5}, B = {c2, c4, c6}, nA = |NA(x)| and nB = |NB(x)|. If nA = 3,
then A ∪ {x} induces a K4. So nA ≤ 2, and similarly nB ≤ 2. If nA = 0
and nB = 0, then x ∈ Z. Now suppose that nA = 2. Up to symmetry, let
NA(x) = {c1, c3}. Then xc2 is an edge, for otherwise {x, c1, c5, c2, c6} induces
either a P5 or a 5-hole; and x has at most one neighbor in {c4, c6} since nB ≤ 2.
Then, x is in R5 or F4,5 or F5,6. The other (symmetric) cases are similar.
Finally suppose that nA = 1. By symmetry, we may assume that nB ≤ 1 and
NA(x) = c1. Then either {x, c1, c3, c6, c2} or {x, c1, c5, c2, c6} induces a P5 or a
5-hole. Thus (21) holds.

For each i in {1, . . . , 6}, Ri ∪Ri+1 ∪ Fi,i+1 is a stable set. (22)

If this set contains two adjacent vertices u and v, then {u, v, ri+2, ri−1} induces
a K4. Thus (22) holds.

For each i in {1, . . . , 6}, either Fi−1,i or Fi,i+1 is empty. (23)

Up to symmetry, let i = 1 and suppose that there are vertices u and v with
u ∈ F6,1 and v ∈ F1,2. If uv is an edge, then {u, v, c3, c5} induces a K4. If it is
not an edge, then {u, v} ∪ (C \ {c1}) induces a 7-antihole. Thus (23) holds.

By (23) and up to symmetry, we may assume that either (a) F1,2 ∪ F3,4 ∪
F5,6 = ∅ or (b) F1,2 ∪ F2,3 ∪ F4,5 ∪ F5,6 = ∅.

By Lemma 3.1, we know that every component X of Z is homogeneous and
3-colorable. Moreover:

For each component X of Z, there are two integers i, j in {1, . . . , 6}
such that N(X) ⊆ Fi,i+1 ∪ Fj,j+1. (24)

Suppose on the contrary that X has neighbors a, b and c in three sets Fi,i+1,
Fj,j+1 and Fk,k+1, respectively, for three different values i, j, k in {1, . . . , 6}.
Then we must be in case (a), so i = 2, j = 4 and k = 6. We note that ab is an
edge, for otherwise a-c4-c2-b-c3 is a P5, and similarly ac and bc are edges. Then
for any vertex x in X, and since X is homogeneous, {x, a, b, c} induces a K4.
Thus (24) holds.

Now let us show that G is 5-colorable. In case (a), the three sets R2 ∪R3 ∪
F2,3, R4 ∪ R5 ∪ F4,5 and R6 ∪ R1 ∪ F6,1 are stable sets by (23), so they form a
5-coloring of G \ Z. In case (b), the four sets R3 ∪ R4 ∪ F3,4, R6 ∪ R1 ∪ F6,1,
R2 and R5 are stable sets by (23), so they form a 5-coloring of G \Z. In either
case, by (24) each component X of Z can be colored with three colors that are
not present in N(X). This completes the proof of the theorem. �
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8 Conclusion

When G is any P5-free graph, the proof from [8] plus the new fact, established
here, that fP5(3) = 5, implies that χ(G) ≤ 5 · 3ω(G)−3. Thus fP5(ω) ≤ 3ω−c,
where c = 3− log 5

log 3 ∼ 1.535.

Stéphan Thomassé asked the following: is it true that there exists a finite
graph H with no K4 and no P5, such that any graph with no K4 and no P5 has
a homomorphism to H? Most of the cases in the proof of our result suggest that
this could be true, except the case of the simple diamond, where we do not end
up with a nice homomorphism. This yields the following more general question.
Given a hereditary class C with bounded chromatic number and closed under
disjoint union, what conditions force the existence of a graph H ∈ C, such that
every graph of C has a homomorphism to H?
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