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Abstract

This paper deals with the single-item capacitated lot sizing problem with concave
production and storage costs, considering minimum order quantity and dynamic time
windows. This problem models a lot sizing where the production lots are constrained
in amount and frequency. In this problem, a demand must be satisfied at each period
t over a planning horizon of T periods. This demand can be satisfied from the stock
or by a production at the same period. When a production is made at period t, the
produced quantity must be greater than a minimum order quantity (L) and lower than
the production capacity (U). The frequency constraints on the production lots are
modeled by dynamic time windows. Between two consecutive production lots, there
is at least Q periods and at most R periods. An optimal algorithms in O(T 9) is given.
The complexity of the algorithm is reduced to O(T 7) when all the demands are strictly
positive.

Keywords: Lot-sizing, polynomial time algorithm, minimum order quantity, capacity constraint,
dynamic time window

1 Introduction

This paper deals with a generalization of the single-item capacitated lot sizing problem
(CLSP) with fixed capacity. The CLSP consists in satisfying a demand at each time period
t over a planning horizon T . The demand is satisfied from stock or by production. Costs
incur for each item produced and also when an item is stored between two consecutive
periods. A fixed maximum production capacity (U) must be respected. The problem con-
sidered in this paper contains a minimum order quantity constraint (MOQ). This constraint
imposes that if an item is produced at a given period, the quantity must be greater than or
equal to a minimum level L. The U and L values are constant over the T periods. This
problem also includes dynamic time windows (DTW). Between two consecutive produc-
tion lots, there are at least Q periods and at most R periods. These DTW are useful in
a long term partnership between two actors, because they allow the decision makers to
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stabilize the relationship [7]. This problem is noted CLSP-MOQ-DTW in the following.

The single-item capacitated lot sizing problem is known to be NP-Hard [3]. However,
some cases are polynomially solvable. This is the case when the capacity is fixed over
the T periods. Florian and Klein [5] considered a case where production and holding cost
functions are concave. They proposed an exact method with a time complexity in O(T 4).
Later van Hoesel and Wagelmans [15] improved the complexity of the algorithm in O(T 3)
when the holding costs are linear. A complete survey on the single-item lot sizing problem
can be found in [4].

Recently minimum order quantity (MOQ) constraints have been developed. These
constraints deal with the production level that must be at least the MOQ if the production
is to be started. The CLSP-MOQ has been shown relevant in many industrial contexts, for
example Lee [9] has studied an industrial problem where a manufacturer imposes a mini-
mum order quantity to its supplier. Furthermore, Porras and Dekker [13] have worked on
an industrial case where the producer imposes minimum order quantities (MOQ) to pro-
duce the items. Zhou et al. [17] have analysed a class of simple heuristic policies to control
stochastic inventory systems with MOQ constraints. They also developed insights into the
impact of MOQ constraints on repeatedly ordered items to fit in an industrial context. The
first exact polynomial time algorithm was developed by Okhrin and Richter [12]. They
solved a special case of the problem in which the unit production cost is constant over
the whole horizon and then can be discarded. Furthermore, they assumed that the holding
costs are also constant over the T periods, with these restrictions they derived a polyno-
mial time algorithm in O(T 3). Li et al. [11] studied the single item lot sizing problem
with lower bounds and described a polynomial algorithm in O(T 7) to solve the special
case with concave production and storage cost function. Later Hellion et al. [6] developed
an optimal O(T 6) polynomial time algorithm to solve the CLSP-MOQ with concave costs
functions, improving Li et al. [11] algorithm. Hellion et al. [6] also provide a computa-
tional experiment to underline the practical complexity of their algorithm.

The production capacity and MOQ constraints were originally motivated by industrial
needs. Considering a retailer ordering from a single supplier, these constraints additionally
give the supplier a way to forecast future orders. However, these constraints only affect the
quantity of the orders, and both the supplier and the retailer lack temporal informations.
To ensure a long-term partnership, actors must guarantee a certain amount of supplied
components and regular orders. The time interval between two orders must in a given time
window [7].
In the existing literature, time windows have been introduced with several definitions. The
delivery time window (also called grace period) was first presented by Lee et al. [10]. In
their model, each demand dt must be delivered during a time window. Later, Akbalik and
Penz [2] used a similar definition to compare just-in-time and time windows policies (in-
troduced by Brahimi et al. [4]). In this problem, items cannot be produced before a defined
period. Recently, Absi et al. [1] studied two production time window problems, consid-
ering lost sales or backlogs. They used dynamic programming to solve their problems.
Hwang [8] proposed an O(T 5) algorithm for the production time windows and concave
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production costs. Van den Heuvel [14] showed that the formulations with production time
windows are equivalent to other models: lot sizing with manufacturing options, lot sizing
with cumulative capacities and lot sizing with inventory bounds. These two time window
definitions were studied by Wolsey [16], he proposed valid inequalities and convex hulls.
However, these time window definitions above do not guarantee regular orders. Hellion
et al. [7] recently presented a new time windows definition in which actors have to agree
on a minimum and a maximum number of periods between two orders. Since an order is
dependent on the period where the last order occurred, these time windows are dynamic
(called DTW as already defined).

In this paper, we extend Hellion et al.’s algorithm [6] to the problem with dynamic
time windows. The paper is organized as follows: Section 2 describes the problem and
introduces the notations. Section 3 presents the necessary definitions and properties to
give a polynomial algorithm. However, under specific assumptions the complexity of the
algorithm can be slightly reduced: this case is presented in Section 4. Finally, concluding
remarks and perspectives are given in Section 5.

2 Problem description and notations

2.1 Description

The single item lot sizing problem consists of satisfying the demands dt of a product at
each period t over T consecutive periods. A demand dt ∈ Z+ may be satisfied by the
production of an item at period t (Xt) and/or from inventory (I) available at the end of the
period t − 1 (It−1). Backlogs are not allowed. The inventory level at the end of a period
t is denoted It. It is assumed without loss of generality that there is no inventory at the
beginning of the first period. The problem is to determine the amount Xt to be produced at
each period, satisfying the demands and minimizing the total cost.
The production at each period is constrained by a constant capacity U. The production
level is also constrained by the MOQ: L. Each subsequent production level is also con-
strained by a dynamic time window (DTW). There are at least Q and at most R periods
between two consecutive production lots.

Last order DTW

time

t t+Q+1 t+R+1

Figure 1: An example of dynamic time window with Q = 2 and R = 4

Figure 1 illustrates the dynamic time window for Q = 2 and R = 4. In the example, a
lot is produced in period t. Since Q = 2, the following lot cannot be produced at neither
at period t + 1 nor at t + 2. Since R = 4, at least lot must be produced in the next five
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periods. Thereafter, the next lot must be produced between periods t + 3 (t + Q + 1) and
t + 5 (t + R + 1) included. Consequently, in each interval of length 3 at most one lot must
be produced. Furthermore, in each interval of length 5, at least one lot must be produced.
Note that if Q = R one lot must be produced every Q + 1 periods. If Q = R = 0, one lot
must be produced every period.
The production cost is a concave function of the quantity produced pt(Xt) and the inventory
cost is a concave function of the inventory level ht(It). Note that concave cost functions
may include set-up costs.

2.2 Mathematical formulation

The mathematical formulation is now presented. The decision variables are given as fol-
lows:

• Xt: quantity of products ordered at period t.

• Yt =

{
1 if an order is placed at period t.
0 otherwise.

• It = inventory level at the end of a period t.

The mathematical formulation of the CLSP-MOQ-DTW is then:

Min
T∑

t=1

pt(Xt) +

T∑
t=1

ht(It) (1)

Xt + It−1 − It = dt ∀t ∈ T (2)

LYt ≤ Xt ≤ UYt ∀t ∈ T (3)
t+R∑
t′=t

Yt′ ≥ 1 ∀t ∈ {1, · · · ,T − R} , (4)

t+Q∑
t′=t

Yt′ ≤ 1 ∀t ∈ {1, · · · ,T − Q} (5)

Xt, It ∈ R ∀t ∈ T (6)

Yt ∈ {0, 1} ∀t ∈ T (7)

The objective function (1) is to minimize the total cost. Constraint (2) is the flow con-
straint. Constraint (3) ensures that the maximum capacity and the minimum order quantity
are satisfied. The dynamic time windows are given by (4) and (5). Constraints (6) and (7)
define the domain of validity the variables.
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3 A polynomial time algorithm

Our work is based on the concept of sub-plan introduced by Florian and Klein [5], which
leads to a polynomial algorithm. We extend the definitions of Hellion et al. [6] to the our
problem, i.e. including the DTW.

Definition 1. Regeneration points
A period t is called a regeneration point if It = 0.

Definition 2. Fractional production periods
A period t is called a fractional production period if L < Xt < U.

Definition 3. Production sequence
The sequence of production quantities from u + 1 to v is noted S uv.

Remark 1. Let S uv and S vw be two production sequences which are separately feasible.
The sequence S uv ∪ S vw may be unfeasible, due to the DTW incurred by the last period
of production of S uv. When computing S uv we cannot know where the first lot of S vw will
be produced. Knowing that Iv = 0 is not sufficient because the following demand could
be zero. If no assumption on the demand is made, the information given by a production
sequence must include the period of the last production. This means that it is possible to
know for each feasible S uv where the first lot of S vw can be produced. In order to take this
into account, we define a specific production sequence.

The definition below introduces the DTW-capacity-constrained sequences S ui,v j (a
production sequence between the periods u and v). The additional indexes i and j al-
low the DTW to be respected between two consecutive production sequences. The last lot
of the previous production sequence was produced at u − i. With R and Q, the DTW is
known, and the first lot can be produced. The production of the last lot must take place at
v − j.

Remark 2. Let k be the number of null demands at the beginning of the DTW-capacity-
constrained sequences. Since Iu = 0 the inventory level can be zero at the end of these k
periods. In any case It > 0 ∀t ∈ [u + k + 1, · · · , v − 1].

Definition 4. DTW-capacity-constrained sequences
S ui,v j is a DTW-capacity-constrained sequence if the following conditions are verified:

• u and v are regeneration points i.e. Iu = Iv = 0;

• The demand dt for t = {u + 1, · · · , v} is satisfied;

• Xt ≥ L for at least one t in [u − i + Q + 1, · · · , u − i + R + 1]

• Xv− j ≥ L and Xt = 0 for t ∈ [v − j + 1, · · · , v]

• The production Xt for t ∈ {u + 1, · · · , v} is either equal to 0, L or U, except for at
most one period which can be a fractional production period.

• S ui,v j respects the DTW constraints.
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• It = 0 before the first production period and It > 0 after the first production period.

The dominance of the DTW-capacity-constrained sequences is proved later.

Property 1. Given two DTW-capacity-constrained sequences S ui,v j and S wk,zl, the suc-
cession of these production sequences is feasible if and only if v = w and j = k. S ui,v j and
S wk,zl are then said compatible.

Proof. Since a DTW-capacity-constrained sequence begins where the previous one ends,
v = w. As stated above, the last lot of S ui,v j is produced at the period v− j. Index wk means
that the last lot of the previous sequence was produced at w − k. As v = w, the DTW can
be respected if j = k. �

Due to the MOQ constraint, the final storage could be strictly positive. At this time,
we consider that IT = 0. The case for which IT > 0 will be considered at the end of this
section, in the Property 5.

Property 2. A solution to the CLSP-MOQ-DTW problem can be seen as succession of
compatible DTW-capacity-constrained sequence.

Proof. Assuming that Ik = 0 for some k ∈ {1...n − 1}. An optimal solution of CLSP-
MOQ-DTW can be found by independently finding solutions to the problems for the first
k periods and for the last T − k periods. However the DTW have to be respected, inside
and between the production sequences. Consequently, a production plan can be seen as
a succession of compatible DTW-capacity-constrained sequences, in accordance to Prop-
erty 1. �

Let us build a directed acyclic graph (G) as follows. Define T + 1 vertices labeled
from 0 to T . All these vertices are duplicated on R + 1 level, and each vertex is labeled
(t, i) referring to its period t ∈ 0 . . . T , and its level i ∈ 0 . . .R, respectively. A vertex (t, i)
signifies that the period t is a regeneration point. For convenience two additional vertices
start and end are added. Each arc (u, i) → (v, j) models a DTW-capacity-constrained
sequence S ui,v j. A number of arcs can be immediately discarded, since the production at
periods u − i and v − j is unfeasible considering a given DTW. The vertices start and end
are connected at a null cost with all the nodes (0, i) and (T, i), ∀i ∈ [0, · · · ,R], respectively.
For each pair {(t, i),(T, j)}, we have to add two arcs to the graph, one representing IT = 0
(Property 4 is given below), and one representing IT , 0 (Property 5 is given at the end of
the section). Figure 2 shows an instance of a (G) considering T = 3, Q = 1 and R = 1. A
shortest path between the nodes start and end leads to an optimal production plan.
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(start)

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(2, 0)

(2, 1)

(3, 0)

(3, 1)

(end)

Figure 2: An example of graph G considering T = 3, Q = 1 and R = 1

Property 3. Let us consider an interval of periods [u, v] such that Iu = Iv = 0. DTW-
capacity-constrained sequences are dominant for CLSP-MOQ-DTW (i.e. at least one op-
timal solution is a DTW-capacity-constrained sequence).

Proof. To prove this result, we show that if a production sequence S ui,v j is not a DTW-
capacity-constrained sequence, it cannot be an extreme point of the polyhedron defined by
constraints 2 to 7, and consequently is dominated by an other solution. In order to prove
this result, we show that the solution S ui,v j is a convex combination of two other feasible
solutions.
Let us consider a solution S ui,v j such that both u and v are regeneration points. Iu = Iv = 0,
It , 0 for t ∈ {t′, · · · , v − 1} where t′ is the first lot produced in a sequence (see Remark 2)
in such a way that there exist at least two fractional production periods a and b such that
t′ ≤ a < b ≤ v and L < Xa, Xb < U. Since S ui,v j is a feasible sequence for this problem, the
DTW are respected. Consequently, we can relocate a small amount of production between
Xa and Xb as follows. Let us define ω as the biggest production quantity we can relocate
keeping the solution feasible, and without changing other production levels. Then:

ω = min{U − Xa ; U − Xb ; Xa − L ; Xb − L ;
b−1
min
t=a

It}

By relocating 1
2ω from a to b, we obtain a solution S ′ui,v j. The production plan S ′ui,v j is

obviously feasible and the DTW constraints still hold. Symmetrically, by relocating 1
2ω

from b to a, we obtain a valid solution S ′′ui,v j. However, S ui,v j = 1
2 S ′ui,v j + 1

2 S ′′ui,v j, proving
that S ui,v j is not an extreme point. Therefore S ui,v j is not the unique optimal solution, and
it is dominated. �

Property 4. A DTW-capacity-constrained sequence S ui,v j can be computed in O(T 5).

Proof. Let us define α (resp. β) as the number of periods in which the production is
equal to U (resp. L). The fractional production is noted ε with L < ε < U. Using
Duv =

∑v
t=u+1 dt, the total demand for the sequence, we can write:
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αU + βL + ε = Duv (8)

In some cases, αU + βL = Duv. This means that there is no fractional production
period in the DTW-capacity-constrained sequence. In this case we note ε = 0. Note also
that Okhrin and Richter [12] define the same parameters, called k and K in their paper.

First of all, we will prove that the number of triplets (α, β, ε) is in O(T ). This will be
followed by the proof that it is possible to compute a DTW-capacity-constrained sequence
in O(T 5).

Consider a given β, we have only one feasible value for α, which is bDuv−βL
U c. The

magnitude of β is in O(T ), thus the number K of triplets (α, β, ε) is in O(T ). At most there
are K different ε, and they are noted εk for {k = 1, · · · ,K}.

We must now prove that the best production plan can be found in polynomial time.
Considering a single DTW-capacity-constrained sequence S ui,v j, another directed acyclic

graph (UV) can be built (see Figure 3). For each period t such as u + 1 ≤ t ≤ v we have
a node for each feasible cumulative production level. We have an arc labeled x between 2
nodes a and b only if a production Xb = x is feasible, with x being either L, U or εk. Each
arc is weighted with the associated cost (production and storage). A shortest path allows
the minimization of the total cost of this DTW-capacity-constrained sequence.

0

L

U

ε1

ε2

L

U

ε1

ε2

L+ ε2 ; U + ε1 L+ ε2 ; U + ε1

L

U

ε1
ε2

L

U

ε1

ε2

ε2

ε1

U

L

ε2

ε1

U

L

u u+ 1 u+ 2 u+ 3 u+ 4 v

Figure 3: S u1,v1 : an example of graphUV with 5 periods, Q = 1 and R = 2

The Figure 3 shows how a given DTW-capacity-constrained sequence can be com-
puted. We choose to display S u1,v1, considering 5 periods and Q = 1 and R = 2. In this
example, we have to choose between producing at u + 1 or u + 2, knowing that the last
production was at u − 1. Lots must also be produced at u + 4, because u + 4 = v − 1.

Considering a given triplet k: (α, β, εk), the number of nodes at each level of the graph
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is in O(T 2), since the magnitude of α and β are both in O(T ). Therefore for this triplet we
have O(T 3) nodes. Each node has at most 3 predecessors on each level, leading to O(T )
predecessors. The evaluation of a node for the triplet k can be made in O(T 4). The number
of triplets is in O(T ) and consequently the time complexity for finding an optimal solution
is in O(T 5).
This concludes the proof of property 4. �

Unfortunately, as mentioned above, due to the MOQ constraint an optimal solution
can have items in stock at T . Let us assume that the storage cost hT−1(IT−1) for a positive
value of IT−1 is very high. If the production cost at period T is low and if the demand at
period T respects 0 < dT < L, the best strategy could be to produce L at the last period
leading to a storage of IT = L − dT items. Consequently, we must study the sequences
Ŝ ui,T j where u is a regeneration point and such that IT , 0.

Property 5. An optimal production sequence Ŝ ui,T j such that u is a regeneration point,
and IT , 0 can be computed in polynomial time.

Proof. First of all, Ŝ ui,T j cannot contain a fractional production period; if Ŝ ui,T j contains
a fractional production period at a period t′ of value ε, it is possible to decrease the pro-
duction at this period by min{ε − L,minT

t=t′ It}. Furthermore, if Ŝ ui,T j contains a period
where the production is maximum (U) at a period t′, we can easily decrease the produc-
tion because the storage levels are strictly positive from t′ to T . Then Ŝ ui,T j cannot contain
a production level at U.

Consequently, the sequence Ŝ ui,T j only has production periods at L and 0. Further-
more, IT < L, otherwise we can suppress one of the productions, and then there is only
one value for β which is:

β = dDu+1T

L
e

Thus there is only one feasible triplet (α, β, ε) in this production sequence. The best
production plan can now be computed in O(T 4) (see Property 4) with a graph similar to
the one presented in the Figure 3. �

We can now derive a polynomial time algorithm (called DTW-HMP) from the previ-
ous properties.

Theorem 1. Algorithm HMP-DTW gives an optimal solution for the CLSP-MOQ-DTW
problem with concave production and storage costs in time O(T 9)

Proof. An optimal solution is given by a succession of sub-sequences between two regen-
eration points (Property 2). One of the shortest paths in graph G is an optimal solution (see
Figure 2). The construction of the graph G is in O(T 9). Furthermore, we have O(T 4) arcs
in graph G and each arc can be computed in O(T 5) (see Properties 4 and 5), leading to a
time complexity of O(T 9). Finding one of the shortest paths in G can be made in O(T 4).
We therefore conclude that the time complexity of the algorithm HMP-DTW is in O(T 9)
(Algorithm 1). �
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Algorithm 1 DTW-HMP
Build the graph (G)
for each edge E of (G) do

Build the corresponding graph (UV)
Perform a shortest path algorithm to find an optimal production sequence and its
cost
Set the weight of the edge E with the obtained cost

end for
Perform a shortest path algorithm on graph (G) to find the best production sequence

4 An O(T 7) algorithm when the demand are strictly positive

In this section it is shown that, with the assumption that dt > 0 ∀t ∈ T , the complexity of
the algorithm can be slightly reduced. Let us called this new problem CLSP-MOQ-DTW
with positive demands (CLSP-MOQ-DTW-PD). Consider again two production sequences
S uv and S vw such that u, v and w are regeneration points. S uv and S vw are separately
feasible, that is to say they both respect all the constraints, including the DTW. The
production sequence is defined as s = S uv ∪ S vw.

Remark 3. Consider that Iv = 0 and dv+1 > 0. When computing S vw a lot must be
produced at v + 1 to satisfy the demand dv+1. This means that each computed S uv has
to allow the production at v + 1 for the following production sequence. The information
about the last period of production of S uv can therefore be discarded. This decreases the
number of DTW-capacity-constrained sequence to compute.

This in turn, leads to another extension of the original definition.

Definition 5. PD-capacity-constrained sequences
S uv is a PD-capacity-constrained sequence if the following conditions are verified:

• u and v are regeneration points i.e. Iu = Iv = 0;

• The demand dt for t = {u + 1, · · · , v} is satisfied;

• For all t ∈ {u + 1, · · · , v − 1}, It > 0 i.e. t is not a regeneration point;

• The production Xt for t ∈ {u + 1, · · · , v} is equal to 0, U or L, except for at most one
period which can be a fractional production period.

• S uv respects the DTW constraints, considering that v+1 is a production period.

We can easily extend the DTW-capacity-constrained sequences properties to the PD-
capacity-constrained sequences: two PD-capacity-constrained sequences can follow each
other, a succession of them can solve the problem and they are dominant (Properties 1, 2
and 3, respectively). However, as said above, the number of sequences to compute has
decreased. The general graph implied (say graph GPD) is a simplification of the graph G
(Figure 2). The only difference is that the T + 1 vertices no longer need to be duplicated
on R + 1 levels.
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Property 6. A PD-capacity-constrained sequence can be computed in O(T 5).

Proof. Considering a single PD-capacity-constrained sequence S u,v, a directed acyclic
graph (UVPD) can be built (see Figure 4 for an example). It is similar to the graph
(UV) presented in Figure 3.

0

ε2

L

ε1

U

L+ ε2

U + ε1

L+ ε2

U + ε1

L+ ε2 ; U + ε1

ε2

L

ε1

U

L

L

ε2

ε2
U

U

ε1

ε1

u u+ 1 u+ 2 u+ 3 u+ 4 v

Figure 4: An example of graphUVPD with 5 periods, Q = 1 and R = 2

The Figure 4 shows how a PD-capacity-constrained sequence S uv can be computed,
considering 5 periods and Q = 1 and R = 2. In the example shown, lots must be produced
at u + 1. The period v + 1 must also be allowed to be in a DTW. Thus there is the choice
between producing at u + 3 or u + 4.
As in Property 4 the time complexity for finding an optimal solution is in O(T 5). �

Theorem 2. Assuming that dt > 0 (∀t ∈ T), the algorithm HMP-DTW-PD gives an
optimal solution for the CLSP-MOQ-DTW-PD with concave production and storage costs
in time in O(T 7)

Proof. The proof here is the same as the one presented in Theorem 1. The only difference
is that we only have O(T 2) arcs in graph (GPD), instead of the initial O(T 4) arcs in graph
G. This leads to the new time complexity of O(T 7). �

5 Conclusion

The focus of this paper is a generalization of the capacitated single item lot sizing prob-
lem. In this paper, the production levels are bounded by a minimum order quantity and a
maximum capacity when a lot is produced. Furthermore, the frequency of the produced
lots is modeled by dynamic time windows, recently introduced by Hellion [7]. Between
two consecutive production lots, there is are least Q periods and at most R periods. Both
production and storage cost functions are concave. We proposed an O(T 9) exact algo-
rithm that generalizes Hellion and al’s [6] algorithm. A less complex algorithm in O(T 7)
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is also provided in a case where all the demands are strictly positive. The theoretical com-
plexity of Algorithm HMP-DTW appears difficult to improve with general concave costs.
In future work, it would be interesting to determine if this theoretical complexity can be
decreased when the cost structure is limited to a fixed cost plus a linear cost. Other as-
sumptions such as the consideration of only linear storage costs [12] may lead to other
improvements in the complexity of the algorithm.
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